Diffusionless transformation

Last updated
Diffusionless transformation classifications Diffusionless classification.svg
Diffusionless transformation classifications

Diffusionless transformations, commonly known as displacive transformations, denote solid-state alterations in the crystal structure that do not hinge on the diffusion of atoms across extensive distances. Rather, these transformations manifest as a result of synchronized shifts in atomic positions, wherein atoms undergo displacements of distances smaller than the spacing between adjacent atoms, all while preserving their relative arrangement. An exemplar of such a phenomenon is the martensitic transformation, a notable occurrence observed in the context of steel materials. The term "martensite" was originally coined to describe the rigid and finely dispersed constituent that emerges in steels subjected to rapid cooling. Subsequent investigations revealed that materials beyond ferrous alloys, such as non-ferrous alloys and ceramics, can also undergo diffusionless transformations. Consequently, the term "martensite" has evolved to encompass the resultant product arising from such transformations in a more inclusive manner. In the context of diffusionless transformations, a cooperative and homogeneous movement occurs, leading to a modification in the crystal structure during a phase change. These movements are small, usually less than their interatomic distances, and the neighbors of an atom remain close. The systematic movement of large numbers of atoms led to some to refer to these as military transformations in contrast to civilian diffusion-based phase changes, initially by Frederick Charles Frank and John Wyrill Christian. [1] [2]

Contents

The most commonly encountered transformation of this type is the martensitic transformation which, while probably the most studied, is only one subset of non-diffusional transformations. The martensitic transformation in steel represents the most economically significant example of this category of phase transformations. However, an increasing number of alternatives, such as shape memory alloys, are becoming more important as well.

Classification and definitions

When atoms or groups of atoms coordinate to displace their neighboring counterparts resulting in structural modification, this phenomenon is known as a displacive transformation. The scope of displacive transformations is extensive, encompassing a diverse array of structural changes. As a result, additional classifications have been devised to provide a more nuanced understanding of these transformations. [3]

The first distinction can be drawn between transformations dominated by lattice-distortive strains and those where shuffles are of greater importance.

Homogeneous lattice-distortive strains, also known as Bain strains, transform one Bravais lattice into a different one. This can be represented by a strain matrix S which transforms one vector, y, into a new vector, x:

This is homogeneous, as straight lines are transformed into new straight lines. Examples of such transformations include a cubic lattice increasing in size on all three axes (dilation) or shearing into a monoclinic structure.

Diffusionless shuffles distortions.svg

Shuffles, aptly named, refer to the minute displacement of atoms within the unit cell. Notably, pure shuffles typically do not induce a modification in the shape of the unit cell; instead, they predominantly impact its symmetry and overall structural configuration.

Phase transformations typically give rise to the formation of an interface delineating the transformed and parent materials. The energy requisite for establishing this new interface is contingent upon its characteristics, specifically how well the two structures interlock. An additional energy consideration arises when the transformation involves a change in shape. In such instances, if the new phase is constrained by the surrounding material, elastic or plastic deformation may occur, introducing a strain energy term. The interplay between these interfacial and strain energy terms significantly influences the kinetics of the transformation and the morphology of the resulting phase. Notably, in shuffle transformations characterized by minimal distortions, interfacial energies tend to predominate, distinguishing them from lattice-distortive transformations where the impact of strain energy is more pronounced.

A subclassification of lattice-distortive displacements can be made by considering the dilutional and shear components of the distortion. In transformations dominated by the shear component, it is possible to find a line in the new phase that is undistorted from the parent phase while all lines are distorted when the dilation is predominant. Shear-dominated transformations can be further classified according to the magnitude of the strain energies involved compared to the innate vibrations of the atoms in the lattice and hence whether the strain energies have a notable influence on the kinetics of the transformation and the morphology of the resulting phase. If the strain energy is a significant factor, then the transformations are dubbed martensitic, if not the transformation is referred to as quasi-martensitic.

Iron-carbon martensitic transformation

The distinction between austenite and martensite is subtle in nature. [4] Austenite exhibits a face-centered cubic (FCC) unit cell, whereas the transformation to martensite entails a distortion of this cube into a body-centered tetragonal shape (BCC). This transformation occurs due to a displacive process, where interstitial carbon atoms lack the time to diffuse out. [5] Consequently, the unit cell undergoes a slight elongation in one dimension and contraction in the other two. Despite marked differences in the mathematical descriptions of these crystal structures owing to symmetry considerations, the chemical bonding between them remains highly similar.

In contrast to cementite, which features bonding akin to ceramic materials, the chemical basis for the hardness of martensite is challenging to elucidate.

The explanation hinges on the crystal's subtle change in dimension. Even a microscopic crystallite is millions of unit cells long. Since all of these units face the same direction, distortions of even a fraction of a percent get magnified into a major mismatch between neighboring materials. The mismatch is sorted out by the creation of crystal defects in work hardening, which results from dislocations within the crystal lattices at the atomic level generated from atomic displacements which serve to prevent the motion of crystal planes under an applied strain. Similar to the process in work-hardened steel, these defects prevent atoms from sliding past one another in an organized fashion, causing the material to become harder.

Shape memory alloys have mechanical properties, which were eventually explained by analogy to martensite. Unlike the iron-carbon system, alloys in the nickel-titanium system can be treated to make the "martensitic" phase thermodynamically stable.

Pseudo martensitic transformation

In addition to displacive transformation and diffusive transformation, a new type of phase transformation that involves a displacive sublattice transition and atomic diffusion was discovered using a high-pressure X-ray diffraction system. [6] The new transformation mechanism has been christened pseudo martensitic transformation. [7]

Related Research Articles

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Martensite</span> Type of steel crystalline structure

Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation.

<span class="mw-page-title-main">Austenite</span> Metallic, non-magnetic allotrope of iron or a solid solution of iron, with an alloying element

Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.

<span class="mw-page-title-main">Bainite</span> Plate-like microstructure in steels

Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C. First described by E. S. Davenport and Edgar Bain, it is one of the products that may form when austenite is cooled past a temperature where it is no longer thermodynamically stable with respect to ferrite, cementite, or ferrite and cementite. Davenport and Bain originally described the microstructure as being similar in appearance to tempered martensite.

In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, and muscle wire. The "memorized geometry" can be modified by fixating the desired geometry and subjecting it to a thermal treatment, for example a wire can be taught to memorize the shape of a coil spring.

Magnetic shape memory alloys (MSMAs), also called ferromagnetic shape memory alloys (FSMA), are particular shape memory alloys which produce forces and deformations in response to a magnetic field. The thermal shape memory effect has been obtained in these materials, too.

<span class="mw-page-title-main">Dislocation</span> Linear crystallographic defect or irregularity

In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.

<span class="mw-page-title-main">Maraging steel</span> Steel known for strength and toughness

Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.

Cryogenic hardening is a cryogenic treatment process where the material is cooled to approximately −185 °C (−301 °F), usually using liquid nitrogen. It can have a profound effect on the mechanical properties of certain steels, provided their composition and prior heat treatment are such that they retain some austenite at room temperature. It is designed to increase the amount of martensite in the steel's crystal structure, increasing its strength and hardness, sometimes at the cost of toughness. Presently this treatment is being used on tool steels, high-carbon, high-chromium steels and in some cases to cemented carbide to obtain excellent wear resistance. Recent research shows that there is precipitation of fine carbides in the matrix during this treatment which imparts very high wear resistance to the steels.

<span class="mw-page-title-main">Crystal twinning</span> Two separate crystals sharing some of the same crystal lattice points in a symmetrical manner

Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.

Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

Pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys.

<span class="mw-page-title-main">Nickel titanium</span> Alloy known for shape-memory effect

Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60.

<span class="mw-page-title-main">Interstitial defect</span> Crystallographic defect; atoms located in the gaps between atoms in the lattice

In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.

<span class="mw-page-title-main">Isothermal transformation diagram</span>

Isothermal transformation diagrams are plots of temperature versus time. They are generated from percentage transformation-vs time measurements, and are useful for understanding the transformations of an alloy steel at elevated temperatures.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

TRIP steel are a class of high-strength steel alloys typically used in naval and marine applications and in the automotive industry. TRIP stands for "Transformation induced plasticity," which implies a phase transformation in the material, typically when a stress is applied. These alloys are known to possess an outstanding combination of strength and ductility.

The R-phase is a phase found in nitinol, a shape-memory alloy. It is a martensitic phase in nature, but is not the martensite that is responsible for the shape memory and superelastic effect.

Radiation materials science is a subfield of materials science which studies the interaction of radiation with matter: a broad subject covering many forms of irradiation and of matter.

References

Notes

  1. D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, Chapman & Hall, 1992, p.172 ISBN   0-412-45030-5
  2. 西山 善次 (1967). "マルテンサイトの格子欠陥" .... 日本金属学会会報 (in Japanese). 日本金属学会. 6 (7): 497–506. doi: 10.2320/materia1962.6.497 . ISSN   1884-5835. Archived from the original on 2023-06-17 via J-STAGE.
  3. Cohen, Morris; Olson, G. B.; Clapp, P. C. (1979). On the Classification of Displacive Phase Transformations (PDF). International Conference on Martensitic Transformations. pp. 1–11.
  4. Duhamel, C.; Venkataraman, S.; Scudino, S.; Eckert, J. (May 2008), "Diffusionless transformations", Basics of Thermodynamics and Phase Transitions in Complex Intermetallics, Book Series on Complex Metallic Alloys, WORLD SCIENTIFIC, vol. 1, pp. 119–145, Bibcode:2008btpt.book..119D, doi:10.1142/9789812790590_0006, ISBN   978-981-279-058-3 , retrieved 2023-08-11
  5. Shewmon, Paul G. (1969). Transformations in Metals. New York: McGraw-Hill. p. 333. ISBN   978-0-07-056694-1.
  6. Chen, Jiuhua; Weidner, Donald J.; Parise, John B.; Vaughan, Michael T.; Raterron, Paul (2001-04-30). "Observation of Cation Reordering during the Olivine-Spinel Transition in Fayalite by In Situ Synchrotron X-Ray Diffraction at High Pressure and Temperature" . Physical Review Letters. American Physical Society (APS). 86 (18): 4072–4075. Bibcode:2001PhRvL..86.4072C. doi:10.1103/physrevlett.86.4072. ISSN   0031-9007. PMID   11328098. Archived from the original on 2023-06-17.
  7. Leutwyler, Kristin (May 2, 2001). "New Phase Transition May Explain Deep Earthquakes". Scientific American. Archived from the original on 2014-11-17. Retrieved 2023-06-17.

Bibliography