Digital Private Network Signalling System

Last updated

The Digital Private Network Signalling System (DPNSS) is a network protocol used on digital trunk lines for connecting to PABX. It supports a defined set of inter-networking facilities.

Contents

DPNSS was originally defined by British Telecom. The specification for the protocol is defined in BTNR188. The specification currently comes under the Network Interoperability Consultative Committee.

History

DPNSS was developed in the early 1980s by BT, or its forerunner, Post Office Telecommunications in recognition that the emerging Digital Private Circuit Primary Rate product 'Megastream' had to address the market for both data and voice, the latter being significantly greater because of the market for PBXs. At the time, BT dictated what signalling could be used on its leased lines and, whilst it only had a minority interest in the sales of PBXs, was requested by the PBX manufacturers to produce a standard to prevent the creation of a plethora of conflicting PBX protocols being developed. Under the liberalization rules of the day (1979), BT was barred from manufacturing, selling or supplying PBXs of more than 200 extensions. Digital (PCM-based) PBXs were just starting to come into the marketplace with the Plessey PDX (a licensed version of the ROLM CBX) and the GEC SL1 (a licensed version of the Northern Telecom SL1). It was recognised that corporate customers would wish to network these systems across the country. At the time, 'CAS' inter node signaling was slow and inter-register signaling MF5, developed from PSTN signalling protocols, was complex and would not support sufficient features. The support for DPNSS as BT's own signalling protocol also differentiated BT's private circuit's services from those of its emerging rival Mercury Communications. DPNSS was an active (and successful) collaboration between PBX manufacturers and BT which started relatively slowly (BT & Plessey) but quickly snowballed with MITEL, GEC, Ericsson, Philips and eventually Nortel all joining to create a powerful and feature rich protocol. BT and some of the UK manufacturers championed DPNSS into ECMA and CCITT (ITU) but it was eventually deprecated by the standards bodies in favour of Q931 and QSig. Nevertheless, the elegance of the protocol and its compatibility with PBX features ensured the adoption DPNSS actually grew in Europe, compared to the much slower take-up of Qsig. There were also attempts (during 1984) to take DPNSS into North America. Unfortunately the structures for the creation of standards in North America seemed to prevent manufacturer collaboration as a route forward and the ANSI standards body was not interested in creating PBX interworking standards. Version 1 of BTNR188 (DPNSS) was issued in 1983; the last version of DPNSS to be released 6 in 1995 included compatibility with ISDN features released in V5. A lightweight version of DPNSS 'APNSS' was developed using analogue trunks (Sometimes compressed) and a modem to support D channel signalling.

Overview of the Protocol

Layer 1(CCITT) ITU-G703 defines the physical and electrical interface. G704 defines the Frame structure of the 2,048 Mbs sent across the link. G732 defines the allocation of that frame structure into the 32 discrete 64 Kbit 'channels', of which 0 is used for alignment of the frames and 16 is (by convention only) allocated to common channel signalling. Speech is carried as G711. Layer 2 Timeslot 16, 64Kbs operates as HDLC LAPB, to support up to 60 PVCs or DLCs (data link connections) (30 directly associated with the bearer channels and 30 for unrelated messages) as the specification describes them. Therefore, at maximum operation, each potential traffic channel can have two simultaneous data channels available for messages. Note that HDLC operates as a statistical multiplexing system. When traffic deltas are low, a single call establishment message will have access to the full 64Kbs (allowing for overheads). DPNSS is a layer 3 protocol functioning as common channel signalling. The functionality is divided into Levels (confusingly nothing to do with OSI layers.) Levels 1-6 deal with simple call establishment (make call/break call) and are the minimum requirements by which a PBX can be said to be DPNSS compatible. The remaining levels are allocated to telephony features, supplementary services or to administrative features. Note that support of 'levels' by a PBX is not necessarily incremental. Some levels are interdependent but a PBX may omit support of some levels (above 6) and support others.

DPNSS is a compelled protocol in that each instruction issued must be met with an appropriate response from the other PBX otherwise the message is re-transmitted (until timer expiry). This means that when interworking two PBXs features invoked on PBX A must be acknowledged by PBX B even if that feature is not supported. DPNSS carries its protocol messages as short strings of IA5 text. It is therefore much easier to interpret in its native form than Q931/Qsig or H323/H450 and a precursor to the plain language format of SIP.

Practical Considerations

As HDLC can operate successfully in quite poor (errored) data environments, DPNSS will work over a 2 Mbit/s link running without proper synchronisation (plesiochronously) and over poor quality connections (including badly terminated connectors). When setting up PBXs to run a DPNSS connection one end must be defined as the primary or 'A' end. This is a protocol requirement and has nothing to do with link synchronisation. However, such badly synchronised links were frowned upon because of the problems associated with sending faxes and/or other modem based communication which were not specifically identified within the protocol.

DPNSS and VoIP

For a protocol that began life in the 1980s, DPNSS is natively a long way from VoIP. However, many of the hybrid VoIP PBXs available from manufacturers worldwide provide on-board DPNSS trunk cards. Where they do not, a protocol converter is necessary. Commercially available equipment offers the ability to convert from DPNSS to Q.Sig. Note that it is also possible to tunnel DPNSS and its associated PCM (G711) over an IP network. This can be point to point where the IP network carries packetised voice N x 64 Kbs speech and a separate IP signalling channel to carry the notional 64 Kbs of DPNSS signalling. A more sophisticated solution uses intelligence on the edge of the IP network to route voice to the correct node. This is a Voice VPN. Note that this should not be confused with the pre-VOIP 'Voice VPN' deployed by routing calls intelligently in a TDM switching platform, often Nortel DMS100 and customers PBX nodes.

Criticisms

Some critics of DPNSS suggest that it is too loosely defined and allows too much latitude in its interpretation of message formats and timers. It is also sometimes mistakenly believed that DPNSS is semi proprietary and that it is only possible to connect PBXs from the same manufacturer. i.e. Siemens will connect to Siemens, Mitel to Mitel etc. Experience indicates that this is not the case and BT's FeatureNet platform (Nortel's DMS100) running DPNSS, has interconnected successfully to many PBX types available in the UK. In addition, as part of the first commercial implementation of DPNSS (in the Government Telephone Network or GTN in 1983), BT insisted that the core of the network be made from PBXs of different manufacture to prove the interoperability in real life.

See also

Related Research Articles

<span class="mw-page-title-main">Digital enhanced cordless telecommunications</span> ITU Standard for cordless telephone systems

Digital Enhanced Cordless Telecommunications (DECT) is a cordless telephony standard maintained by ETSI. It originated in Europe, where it is the common standard, replacing earlier standards, such as CT1 and CT2. Since the DECT-2020 standard, it also includes IoT communication.

Digital Access Signalling System 2 (DASS2) is an obsolescent protocol defined by British Telecom for digital links to PSTN based on ISDN. Although still available on request, it has been superseded by ETS 300 102 ("EuroISDN").

QSIG is an ISDN based signaling protocol for signaling between private branch exchanges (PBXs) in a private integrated services network (PISN). It makes use of the connection-level Q.931 protocol and the application-level ROSE protocol. ISDN "proper" functions as the physical link layer.

The Session Initiation Protocol (SIP) is a signaling protocol used for initiating, maintaining, and terminating communication sessions that include voice, video and messaging applications. SIP is used in Internet telephony, in private IP telephone systems, as well as mobile phone calling over LTE (VoLTE).

<span class="mw-page-title-main">X.25</span> Standard protocol suite for packet switched wide area network (WAN) communication

X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee in a series of drafts and finalized in a publication known as The Orange Book in 1976.

<span class="mw-page-title-main">Business telephone system</span> Telephone system typically used in business environments

A business telephone system is a telephone system typically used in business environments, encompassing the range of technology from the key telephone system (KTS) to the private branch exchange (PBX).

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Various voice over IP technologies are available on smartphones; IMS provides a standard protocol across vendors.

<span class="mw-page-title-main">IEC 62056</span>

IEC 62056 is a set of standards for electricity metering data exchange by International Electrotechnical Commission. The IEC 62056 standards are the international standard versions of the DLMS/COSEM specification.

SIGTRAN is the name, derived from signaling transport, of the former Internet Task Force (I) working group that produced specifications for a family of protocols that provide reliable datagram service and user layer adaptations for Signaling System and ISDN communications protocols. The SIGTRAN protocols are an extension of the SS7 protocol family, and they support the same application and call management paradigms as SS7. However, the SIGTRAN protocols use an Internet Protocol (IP) transport called Stream Control Transmission Protocol (SCTP), instead of TCP or UDP. Indeed, the most significant protocol defined by the SIGTRAN group is SCTP, which is used to carry PSTN signaling over IP.

<span class="mw-page-title-main">Q.931</span>

ITU-T Recommendation Q.931 is the ITU standard ISDN connection control signalling protocol, forming part of Digital Subscriber Signalling System No. 1. Unlike connectionless systems like UDP, ISDN is connection oriented and uses explicit signalling to manage call state: Q.931. Q.931 typically does not carry user data. Q.931 does not have a direct equivalent in the Internet Protocol stack, but can be compared to SIP. Q.931 does not provide flow control or perform retransmission, since the underlying layers are assumed to be reliable and the circuit-oriented nature of ISDN allocates bandwidth in fixed increments of 64 kbit/s. Amongst other things, Q.931 manages connection setup and breakdown. Like TCP, Q.931 documents both the protocol itself and a protocol state machine.

<span class="mw-page-title-main">Nortel Norstar</span> Office telephone system

The Nortel Norstar, previously the Meridian Norstar, was a small and medium-sized business digital key telephone system introduced by Nortel and later sold to Avaya. It featured automatic call distribution, and supported up to 192 extensions. In the United Kingdom it was sold by British Telecom, rebadged as the BT Norstar.

Text over IP is a means of providing a real-time text (RTT) service that operates over IP-based networks. It complements Voice over IP (VoIP) and Video over IP.

The TV Network Protocol or TVNP as it is more commonly referred to is an open network protocol developed to enable CCTV systems from any manufacturer to be integrated into an existing CCTV network. It provides high levels of support for audio routing, video routing and camera control.

UNIStim is a deprecated Telecommunications protocol developed by Nortel for IP Phone and IP PBX communications.

<span class="mw-page-title-main">Avaya IP Phone 1140E</span> IP phone

Avaya IP Phone 1140E in telecommunications is a desktop Internet Protocol client from 1100-series manufactured by Avaya for unified communications. The phone can operate on the Session Initiation Protocol (SIP) or UNIStim protocols. The SIP firmware supports presence selection and notification along with secure instant messaging. This device has an integrated 10/100/1000BASE-T auto-sensing Ethernet switch with two ports and an integrated USB port, and is Bluetooth capable. The SIP version of this phone has full IPv6 functionality and only requires 2.9 watts of power.

CT Connect is a software product that allows computer applications to monitor and control telephone calls. This monitoring and control is called computer-telephone integration, or CTI. CT Connect implements CTI by providing server software that supports the CTI link protocols used by a range of telephone systems, and client software that provides an application programming interface (API) for telephony functions.

Aculab is a privately held, UK-based limited company that was founded in 1978. It is a designer, developer and manufacturer that specialises in providing API-driven, enabling technology sub-systems for telecommunications related OEM products such as are used in fixed line PSTN, wireless and VoIP networks. Aculab's products are sold worldwide, primarily through direct sales and also via the reseller channel. Aculab's headquarters and R&D facilities are located in Milton Keynes, UK. It has a branch office in Norwood, Massachusetts, USA.

The 1100-series IP phones are 6 different desktop IP clients manufactured by Avaya for Unified communications which can operate on the SIP or UNIStim protocols. The SIP Firmware supports presence selection and notification along with secure instant messaging.