Distributed-queue dual-bus

Last updated

In telecommunication, a distributed-queue dual-bus network (DQDB) is a distributed multi-access network that (a) supports integrated communications using a dual bus and distributed queuing, (b) provides access to local or metropolitan area networks, and (c) supports connectionless data transfer, connection-oriented data transfer, and isochronous communications, such as voice communications.

IEEE 802.6 is an example of a network providing DQDB access methods.

Concept of operation

The DQDB medium access control (MAC) algorithm is generally credited to Robert Newman who developed this algorithm in his PhD thesis in the 1980s at the University of Western Australia. To appreciate the innovative value of the DQDB MAC algorithm, it must be seen against the background of LAN protocols at that time, which were based on broadcast (such as IEEE 802.3 Ethernet) or a ring (like IEEE 802.5 Token Ring and FDDI). The DQDB may be thought of as two token rings, one carrying data in each direction around the ring. This improves reliability which is important in Metropolitan Area Networks (MAN), where repairs may take longer than in a LAN and Wi-Fi because the damage may be inaccessible.

The DQDB standard IEEE 802.6 was developed while ATM (Broadband ISDN) was still in early development, but there was strong interaction between the two standards. ATM cells and DQDB frames were harmonized. They both settled on essentially a 48-byte data frame with a 5-byte header. In the DQDB algorithm, a distributed queue was implemented by communicating queue state information via the header. Each node in a DQDB network maintains a pair of state variables which represent its position in the distributed queue and the size of the queue. The headers on the reverse bus communicated requests to be inserted in the distributed queue so that upstream nodes would know that they should allow DQDB cells to pass unused on the forward bus. The algorithm was remarkable for its extreme simplicity.

Currently DQDB systems are being installed by many carriers [ who? ] in entire cities, with lengths that reach up to 160 km (99 mi) with speeds of a DS3 line (44.736 Mbit/s). Other implementations use optical fiber for a length of up to 100 km and speeds around 150 Mbit/s.

Related Research Articles

<span class="mw-page-title-main">Asynchronous Transfer Mode</span> Digital telecommunications protocol for voice, video, and data

Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by the American National Standards Institute and ITU-T for digital transmission of multiple types of traffic. ATM was developed to meet the needs of the Broadband Integrated Services Digital Network as defined in the late 1980s, and designed to integrate telecommunication networks. It can handle both traditional high-throughput data traffic and real-time, low-latency content such as telephony (voice) and video. ATM provides functionality that uses features of circuit switching and packet switching networks by using asynchronous time-division multiplexing.

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

<span class="mw-page-title-main">Local area network</span> Computer network that connects devices over a limited area

A local area network (LAN) is a computer network that interconnects computers within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits.

<span class="mw-page-title-main">Synchronous optical networking</span> Standardized protocol

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

<span class="mw-page-title-main">Fiber Distributed Data Interface</span> Standard for data transmission in a local area network

Fiber Distributed Data Interface (FDDI) is a standard for data transmission in a local area network. It uses optical fiber as its standard underlying physical medium, although it was also later specified to use copper cable, in which case it may be called CDDI, standardized as TP-PMD, also referred to as TP-DDI.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

<span class="mw-page-title-main">ARCNET</span>

Attached Resource Computer NETwork is a communications protocol for local area networks. ARCNET was the first widely available networking system for microcomputers; it became popular in the 1980s for office automation tasks. It was later applied to embedded systems where certain features of the protocol are especially useful.

<span class="mw-page-title-main">Token bus network</span> Implementation of Token Ring using a virtual ring on a coaxial cable

Token bus is a network implementing a Token Ring protocol over a virtual ring on a coaxial cable. A token is passed around the network nodes and only the node possessing the token may transmit. If a node doesn't have anything to send, the token is passed on to the next node on the virtual ring. Each node must know the address of its neighbour in the ring, so a special protocol is needed to notify the other nodes of connections to, and disconnections from, the ring.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

HiperLAN is a wireless LAN standard. It is a European alternative for the IEEE 802.11 standards. It is defined by the European Telecommunications Standards Institute (ETSI). In ETSI the standards are defined by the BRAN project. The HiperLAN standard family has four different versions.

IEEE 802.6 is a standard governed by the ANSI for Metropolitan Area Networks (MAN). It is an improvement of an older standard which used the Fiber distributed data interface (FDDI) network structure. The FDDI-based standard failed due to its expensive implementation and lack of compatibility with current LAN standards. The IEEE 802.6 standard uses the Distributed Queue Dual Bus (DQDB) network form. This form supports 150 Mbit/s transfer rates. It consists of two unconnected unidirectional buses. DQDB is rated for a maximum of 160 km before significant signal degradation over fiberoptic cable with an optical wavelength of 1310 nm.

The Point-to-Point Protocol over Ethernet (PPPoE) is a network protocol for encapsulating Point-to-Point Protocol (PPP) frames inside Ethernet frames. It appeared in 1999, in the context of the boom of DSL as the solution for tunneling packets over the DSL connection to the ISP's IP network, and from there to the rest of the Internet. A 2005 networking book noted that "Most DSL providers use PPPoE, which provides authentication, encryption, and compression." Typical use of PPPoE involves leveraging the PPP facilities for authenticating the user with a username and password, predominately via the PAP protocol and less often via CHAP. Around 2000, PPPoE was also starting to become a replacement method for talking to a modem connected to a computer or router over an Ethernet LAN displacing the older method, which had been USB. This use-case, connecting routers to modems over Ethernet is still extremely common today.

Switched Multi-megabit Data Service (SMDS) was a connectionless service used to connect LANs, MANs and WANs to exchange data, in early 1990s. In Europe, the service was known as Connectionless Broadband Data Service (CBDS).

On a local area network, token passing is a channel access method where a packet called a token is passed between nodes to authorize that node to communicate. In contrast to polling access methods, there is no pre-defined "master" node. The most well-known examples are IBM Token Ring and ARCNET, but there were a range of others, including FDDI, which was popular in the early to mid 1990s.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

<span class="mw-page-title-main">Token Ring</span> Technology for computer networking

Token Ring is a physical and data link layer computer networking technology used to build local area networks. It was introduced by IBM in 1984, and standardized in 1989 as IEEE 802.5. It uses a special three-byte frame called a token that is passed around a logical ring of workstations or servers. This token passing is a channel access method providing fair access for all stations, and eliminating the collisions of contention-based access methods.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

References

PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.