Double diffusive convection

Last updated
Numerical simulations results show concentration fields at different Rayleigh numbers for fixed value of Rr = 6. The parameters are: (a) RaT = 7x10 , t=1.12x10 , (b) RaT =3.5x10 , t=1.12x10 , (c) RaT =7x10 , t=1.31x10 , (d) RaT=7x10 , t=3.69x10 . It is seen from the figure that finger characteristics such as width, evolution pattern are a function of Rayleigh numbers. Salt fingers.png
Numerical simulations results show concentration fields at different Rayleigh numbers for fixed value of Rρ = 6. The parameters are: (a) RaT = 7×10 , t=1.12×10 , (b) RaT =3.5×10 , t=1.12×10 , (c) RaT =7×10 , t=1.31×10 , (d) RaT=7×10 , t=3.69×10 . It is seen from the figure that finger characteristics such as width, evolution pattern are a function of Rayleigh numbers.

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion. [2]

Contents

Convection in fluids is driven by density variations within them under the influence of gravity. These density variations may be caused by gradients in the composition of the fluid, or by differences in temperature (through thermal expansion). Thermal and compositional gradients can often diffuse with time, reducing their ability to drive the convection, and requiring that gradients in other regions of the flow exist in order for convection to continue. A common example of double diffusive convection is in oceanography, where heat and salt concentrations exist with different gradients and diffuse at differing rates. An effect that affects both of these variables is the input of cold freshwater from an iceberg. Another example of double diffusion is the formation of false bottoms at the interface of sea ice and under-ice meltwater layers. [3] A good discussion of many of these processes is in Stewart Turner's monograph "Buoyancy effects in fluids". [4]

Double diffusive convection is important in understanding the evolution of a number of systems that have multiple causes for density variations. These include convection in the Earth's oceans (as mentioned above), in magma chambers, [5] and in the sun (where heat and helium diffuse at differing rates). Sediment can also be thought as having a slow Brownian diffusion rate compared to salt or heat, so double diffusive convection is thought to be important below sediment laden rivers in lakes and the ocean. [6] [7]

Two quite different types of fluid motion exist—and therefore are classified accordingly—depending on whether the stable stratification is provided by the density-affecting component with the lowest or the highest molecular diffusivity. If the stratification is provided by the component with the lower molecular diffusivity (for example in case of a stable salt-stratified ocean perturbed by a thermal gradient due to an iceberg—a density ratio between 0 and 1), the stratification is called to be of "diffusive" type (see external link below), otherwise it is of "finger" type, occurring frequently in oceanographic studies as salt-fingers. [8] These long fingers of rising and sinking water occur when hot saline water lies over cold fresh water of a higher density. A perturbation to the surface of hot salty water results in an element of hot salty water surrounded by cold fresh water. This element loses its heat more rapidly than its salinity because the diffusion of heat is faster than of salt; this is analogous to the way in which just unstirred coffee goes cold before the sugar has diffused to the top. Because the water becomes cooler but remains salty, it becomes denser than the fluid layer beneath it. This makes the perturbation grow and causes the downward extension of a salt finger. As this finger grows, additional thermal diffusion accelerates this effect.

Role of salt fingers in oceans

Double diffusion convection plays a significant role in upwelling of nutrients and vertical transport of heat and salt in oceans. Salt fingering contributes to vertical mixing in the oceans. Such mixing helps regulate the gradual overturning circulation of the ocean, which control the climate of the earth. Apart from playing an important role in controlling the climate, fingers are responsible for upwelling of nutrients which supports flora and fauna. The most significant aspect of finger convection is that they transport the fluxes of heat and salt vertically, which has been studied extensively during the last five decades. [9]

Governing equations

The conservation equations for vertical momentum, heat and salinity equations (under Boussinesq's approximation) have the following form for double diffusive salt fingers: [10]

Where, U and W are velocity components in horizontal (x axis) and vertical (z axis) direction; k is the unit vector in the Z-direction, kT is molecular diffusivity of heat, kS is molecular diffusivity of salt, α is coefficient of thermal expansion at constant pressure and salinity and β is the haline contraction coefficient at constant pressure and temperature. The above set of conservation equations governing the two-dimensional finger-convection system is non-dimensionalised using the following scaling: the depth of the total layer height H is chosen as the characteristic length, velocity (U, W), salinity (S), temperature (T) and time (t) are non-dimensionalised as [11]

Where, (TT, ST) and (TB, SB) are the temperature and concentration of the top and bottom layers respectively. On introducing the above non-dimensional variables, the above governing equations reduce to the following form:

Where, Rρ is the density stability ratio, RaT is the thermal Rayleigh number, Pr is the Prandtl number, Le is the Lewis number which are defined as

Figure 1(a-d) shows the evolution of salt fingers in heat-salt system for different Rayleigh numbers at a fixed Rρ. It can be noticed that thin and thick fingers form at different RaT. Fingers flux ratio, growth rate, kinetic energy, evolution pattern, finger width etc. are found to be the function of Rayleigh numbers and Rρ.Where, flux ratio is another important non-dimensional parameter. It is the ratio of heat and salinity fluxes, defined as,

Applications

Double diffusive convection holds importance in natural processes and engineering applications. [12] [13] The effect of double diffusive convection is not limited to oceanography, also occurring in geology, [14] astrophysics, [15] and metallurgy. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In thermal fluid dynamics, the Nusselt number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.

In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is also a fluid. The properties that are carried with the advected substance are conserved properties such as energy. An example of advection is the transport of pollutants or silt in a river by bulk water flow downstream. Another commonly advected quantity is energy or enthalpy. Here the fluid may be any material that contains thermal energy, such as water or air. In general, any substance or conserved, extensive quantity can be advected by a fluid that can hold or contain the quantity or substance.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-driven flow. It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. Sound waves are impossible/neglected when the Boussinesq approximation is used since sound waves move via density variations.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles. In mathematics, it is related to Markov processes, such as random walks, and applied in many other fields, such as materials science, information theory, and biophysics. The diffusion equation is a special case of the convection–diffusion equation when bulk velocity is zero. It is equivalent to the heat equation under some circumstances.

There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

<span class="mw-page-title-main">Eddy diffusion</span> Mixing of fluids due to eddy currents

In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in the considered flow. Further, non-dimensionalized Navier–Stokes equations can be beneficial if one is posed with similar physical situations – that is problems where the only changes are those of the basic dimensions of the system.

Thermohaline staircases are patterns that form in oceans and other bodies of salt water, characterised by step-like structures observed in vertical temperature and salinity profiles; the patterns are formed and maintained by double diffusion of heat and salt. The ocean phenomenon consists of well-mixed layers of ocean water stacked on top of each other. The well-mixed layers are separated by high-gradient interfaces, which can be several meters thick. The total thickness of staircases ranges typically from tens to hundreds of meters.

References

  1. Singh, O.P; Srinivasan, J. (2014). "Effect of Rayleigh numbers on the evolution of double-diffusive salt fingers". Physics of Fluids. 26 (62104): 062104. Bibcode:2014PhFl...26f2104S. doi:10.1063/1.4882264.
  2. Mojtabi, A.; Charrier-Mojtabi, M.-C. (2000). "13. Double-Diffusive Convection in Porous Media". In Kambiz Vafai (ed.). Handbook of porous media. New York: Dekker. ISBN   978-0-8247-8886-5.
  3. Notz, D.; McPhee, M.G.; Worster, M.G.; Maykut, G.A.; Schlünzen, K.H.; Eicken, H. (2018). "Impact of underwater-ice evolution on Arctic summer sea ice". Journal of Geophysical Research: Oceans. 108 (C7). doi: 10.1029/2001JC001173 .
  4. Turner, J. S.; Turner, John Stewart (1979-12-20). Buoyancy Effects in Fluids. Cambridge University Press. ISBN   978-0-521-29726-4.
  5. Huppert, H E; Sparks, R S J (1984). "Double-Diffusive Convection Due to Crystallization in Magmas". Annual Review of Earth and Planetary Sciences. 12 (1): 11–37. Bibcode:1984AREPS..12...11H. doi:10.1146/annurev.ea.12.050184.000303.
  6. Parsons, Jeffrey D.; Bush, John W. M.; Syvitski, James P. M. (2001-04-06). "Hyperpycnal plume formation from riverine outflows with small sediment concentrations". Sedimentology. 48 (2): 465–478. Bibcode:2001Sedim..48..465P. doi:10.1046/j.1365-3091.2001.00384.x. ISSN   0037-0746. S2CID   128481974.
  7. Davarpanah Jazi, Shahrzad; Wells, Mathew G. (2016-10-28). "Enhanced sedimentation beneath particle-laden flows in lakes and the ocean due to double-diffusive convection". Geophysical Research Letters. 43 (20): 10, 883–10, 890. Bibcode:2016GeoRL..4310883D. doi:10.1002/2016gl069547. hdl: 1807/81129 . ISSN   0094-8276. S2CID   55359245.
  8. Stern, Melvin E. (1969). "Collective instability of salt fingers". Journal of Fluid Mechanics. 35 (2): 209–218. Bibcode:1969JFM....35..209S. doi:10.1017/S0022112069001066. S2CID   121945515.
  9. Oschilies, A.; Dietze, H.; Kahlerr, P. (2003). "Salt-finger driven enhancement of upper ocean nutrient supply" (PDF). Geophys. Res. Lett. 30 (23): 2204–08. Bibcode:2003GeoRL..30.2204O. doi:10.1029/2003GL018552. S2CID   129229846.
  10. Schmitt, R.W. (1979). "The growth rate of supercritical salt fingers". Deep-Sea Research. 26A (1): 23–40. Bibcode:1979DSRA...26...23S. doi:10.1016/0198-0149(79)90083-9.
  11. Sreenivas, K.R.; Singh, O.P.; Srinivasan, J. (2009v). "On the relationship between finger width, velocity, and fluxes in thermohaline convection". Physics of Fluids. 21 (26601): 026601–026601–15. Bibcode:2009PhFl...21b6601S. doi:10.1063/1.3070527.
  12. Turner, J S (January 1974). "Double-Diffusive Phenomena". Annual Review of Fluid Mechanics. 6 (1): 37–54. Bibcode:1974AnRFM...6...37T. doi:10.1146/annurev.fl.06.010174.000345. ISSN   0066-4189.
  13. Turner, J S (January 1985). "Multicomponent Convection". Annual Review of Fluid Mechanics. 17 (1): 11–44. Bibcode:1985AnRFM..17...11T. doi:10.1146/annurev.fl.17.010185.000303. ISSN   0066-4189.
  14. Singh, O.P; Ranjan, D.; Srinivasan, J. (September 2011). "A Study of Basalt Fingers Using Experiments and Numerical Simulations in Double-diffusive Systems". Journal of Geography and Geology. 3 (1). doi: 10.5539/jgg.v3n1p42 .
  15. Garaud, P. (2018). "Double-Diffusive Convection at Low Prandtl Number". Annual Review of Fluid Mechanics. 50 (1): 275–298. Bibcode:2018AnRFM..50..275G. doi: 10.1146/annurev-fluid-122316-045234 .
  16. Schmitt, R.W. (1983). "The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans and [magmas". Physics of Fluids. 26 (9): 2373–2377. Bibcode:1983PhFl...26.2373S. doi:10.1063/1.864419.