Dynamic discrete choice (DDC) models, also known as discrete choice models of dynamic programming, model an agent's choices over discrete options that have future implications. Rather than assuming observed choices are the result of static utility maximization, observed choices in DDC models are assumed to result from an agent's maximization of the present value of utility, generalizing the utility theory upon which discrete choice models are based. [1]
The goal of DDC methods is to estimate the structural parameters of the agent's decision process. Once these parameters are known, the researcher can then use the estimates to simulate how the agent would behave in a counterfactual state of the world. (For example, how a prospective college student's enrollment decision would change in response to a tuition increase.)
Agent 's maximization problem can be written mathematically as follows:
where
It is standard to impose the following simplifying assumptions and notation of the dynamic decision problem:
The flow utility can be written as an additive sum, consisting of deterministic and stochastic elements. The deterministic component can be written as a linear function of the structural parameters.
Define by the ex ante value function for individual in period just before is revealed:
where the expectation operator is over the 's, and where represents the probability distribution over conditional on . The expectation over state transitions is accomplished by taking the integral over this probability distribution.
It is possible to decompose into deterministic and stochastic components:
where is the value to choosing alternative at time and is written as
where now the expectation is taken over the .
The states follow a Markov chain. That is, attainment of state depends only on the state and not or any prior state.
The value function in the previous section is called the conditional value function, because it is the value function conditional on choosing alternative in period . Writing the conditional value function in this way is useful in constructing formulas for the choice probabilities.
To write down the choice probabilities, the researcher must make an assumption about the distribution of the 's. As in static discrete choice models, this distribution can be assumed to be iid Type I extreme value, generalized extreme value, multinomial probit, or mixed logit.
For the case where is multinomial logit (i.e. drawn iid from the Type I extreme value distribution), the formulas for the choice probabilities would be:
Estimation of dynamic discrete choice models is particularly challenging, due to the fact that the researcher must solve the backwards recursion problem for each guess of the structural parameters.
The most common methods used to estimate the structural parameters are maximum likelihood estimation and method of simulated moments.
Aside from estimation methods, there are also solution methods. Different solution methods can be employed due to complexity of the problem. These can be divided into full-solution methods and non-solution methods.
The foremost example of a full-solution method is the nested fixed point (NFXP) algorithm developed by John Rust in 1987. [2] The NFXP algorithm is described in great detail in its documentation manual. [3]
A recent work by Che-Lin Su and Kenneth Judd in 2012 [4] implements another approach (dismissed as intractable by Rust in 1987), which uses constrained optimization of the likelihood function, a special case of mathematical programming with equilibrium constraints (MPEC). Specifically, the likelihood function is maximized subject to the constraints imposed by the model, and expressed in terms of the additional variables that describe the model's structure. This approach requires powerful optimization software such as Artelys Knitro because of the high dimensionality of the optimization problem. Once it is solved, both the structural parameters that maximize the likelihood, and the solution of the model are found.
In the later article [5] Rust and coauthors show that the speed advantage of MPEC compared to NFXP is not significant. Yet, because the computations required by MPEC do not rely on the structure of the model, its implementation is much less labor intensive.
Despite numerous contenders, the NFXP maximum likelihood estimator remains the leading estimation method for Markov decision models. [5]
An alternative to full-solution methods is non-solution methods. In this case, the researcher can estimate the structural parameters without having to fully solve the backwards recursion problem for each parameter guess. Non-solution methods are typically faster while requiring more assumptions, but the additional assumptions are in many cases realistic.
The leading non-solution method is conditional choice probabilities, developed by V. Joseph Hotz and Robert A. Miller. [6]
The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type. [4]
The model is a simple regenerative optimal stopping stochastic dynamic problem faced by the decision maker, Harold Zurcher, superintendent of maintenance at the Madison Metropolitan Bus Company in Madison, Wisconsin. For every bus in operation in each time period Harold Zurcher has to decide whether to replace the engine and bear the associated replacement cost, or to continue operating the bus at an ever raising cost of operation, which includes insurance and the cost of lost ridership in the case of a breakdown.
Let denote the odometer reading (mileage) at period , cost of operating the bus which depends on the vector of parameters , cost of replacing the engine, and the discount factor. Then the per-period utility is given by
where denotes the decision (keep or replace) and and represent the component of the utility observed by Harold Zurcher, but not John Rust. It is assumed that and are independent and identically distributed with the Type I extreme value distribution, and that are independent of conditional on .
Then the optimal decisions satisfy the Bellman equation
where and are respectively transition densities for the observed and unobserved states variables. Time indices in the Bellman equation are dropped because the model is formulated in the infinite horizon settings, the unknown optimal policy is stationary, i.e. independent of time.
Given the distributional assumption on , the probability of particular choice is given by
where is a unique solution to the functional equation
It can be shown that the latter functional equation defines a contraction mapping if the state space is bounded, so there will be a unique solution for any , and further the implicit function theorem holds, so is also a smooth function of for each .
The contraction mapping above can be solved numerically for the fixed point that yields choice probabilities for any given value of . The log-likelihood function can then be formulated as
where and represent data on state variables (odometer readings) and decision (keep or replace) for individual buses, each in periods.
The joint algorithm for solving the fixed point problem given a particular value of parameter and maximizing the log-likelihood with respect to was named by John Rust nested fixed point algorithm (NFXP).
Rust's implementation of the nested fixed point algorithm is highly optimized for this problem, using Newton–Kantorovich iterations to calculate and quasi-Newton methods, such as the Berndt–Hall–Hall–Hausman algorithm, for likelihood maximization. [5]
In the nested fixed point algorithm, is recalculated for each guess of the parameters θ. The MPEC method instead solves the constrained optimization problem: [4]
This method is faster to compute than non-optimized implementations of the nested fixed point algorithm, and takes about as long as highly optimized implementations. [5]
The conditional choice probabilities method of Hotz and Miller can be applied in this setting. Hotz, Miller, Sanders, and Smith proposed a computationally simpler version of the method, and tested it on a study of the bus engine replacement problem. The method works by estimating conditional choice probabilities using simulation, then backing out the implied differences in value functions. [7] [8]
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:
A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In theoretical physics, path-ordering is the procedure that orders a product of operators according to the value of a chosen parameter:
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In statistics, the theory of minimum norm quadratic unbiased estimation (MINQUE) was developed by C. R. Rao. MINQUE is a theory alongside other estimation methods in estimation theory, such as the method of moments or maximum likelihood estimation. Similar to the theory of best linear unbiased estimation, MINQUE is specifically concerned with linear regression models. The method was originally conceived to estimate heteroscedastic error variance in multiple linear regression. MINQUE estimators also provide an alternative to maximum likelihood estimators or restricted maximum likelihood estimators for variance components in mixed effects models. MINQUE estimators are quadratic forms of the response variable and are used to estimate a linear function of the variances.
In probability theory, the Rice distribution or Rician distribution is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986).
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in problems with continuous choice variables, discrete choice analysis examines "which one". However, discrete choice analysis can also be used to examine the chosen quantity when only a few distinct quantities must be chosen from, such as the number of vehicles a household chooses to own and the number of minutes of telecommunications service a customer decides to purchase. Techniques such as logistic regression and probit regression can be used for empirical analysis of discrete choice.
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.
Mixed logit is a fully general statistical model for examining discrete choices. It overcomes three important limitations of the standard logit model by allowing for random taste variation across choosers, unrestricted substitution patterns across choices, and correlation in unobserved factors over time. Mixed logit can choose any distribution for the random coefficients, unlike probit which is limited to the normal distribution. It is called "mixed logit" because the choice probability is a mixture of logits, with as the mixing distribution. It has been shown that a mixed logit model can approximate to any degree of accuracy any true random utility model of discrete choice, given appropriate specification of variables and the coefficient distribution.
Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
In mathematical physics, the Berezin integral, named after Felix Berezin,, is a way to define integration for functions of Grassmann variables. It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.
In statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.
Graphical models have become powerful frameworks for protein structure prediction, protein–protein interaction, and free energy calculations for protein structures. Using a graphical model to represent the protein structure allows the solution of many problems including secondary structure prediction, protein-protein interactions, protein-drug interaction, and free energy calculations.
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.
Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models. Like stochastic gradient descent, SGLD is an iterative optimization algorithm which uses minibatching to create a stochastic gradient estimator, as used in SGD to optimize a differentiable objective function. Unlike traditional SGD, SGLD can be used for Bayesian learning as a sampling method. SGLD may be viewed as Langevin dynamics applied to posterior distributions, but the key difference is that the likelihood gradient terms are minibatched, like in SGD. SGLD, like Langevin dynamics, produces samples from a posterior distribution of parameters based on available data. First described by Welling and Teh in 2011, the method has applications in many contexts which require optimization, and is most notably applied in machine learning problems.