Dynamic discrete choice

Last updated

Dynamic discrete choice (DDC) models, also known as discrete choice models of dynamic programming, model an agent's choices over discrete options that have future implications. Rather than assuming observed choices are the result of static utility maximization, observed choices in DDC models are assumed to result from an agent's maximization of the present value of utility, generalizing the utility theory upon which discrete choice models are based. [1]

Contents

The goal of DDC methods is to estimate the structural parameters of the agent's decision process. Once these parameters are known, the researcher can then use the estimates to simulate how the agent would behave in a counterfactual state of the world. (For example, how a prospective college student's enrollment decision would change in response to a tuition increase.)

Mathematical representation

Agent 's maximization problem can be written mathematically as follows:

where

Simplifying assumptions and notation

It is standard to impose the following simplifying assumptions and notation of the dynamic decision problem:

1. Flow utility is additively separable and linear in parameters

The flow utility can be written as an additive sum, consisting of deterministic and stochastic elements. The deterministic component can be written as a linear function of the structural parameters.

2. The optimization problem can be written as a Bellman equation

Define by the ex ante value function for individual in period just before is revealed:

where the expectation operator is over the 's, and where represents the probability distribution over conditional on . The expectation over state transitions is accomplished by taking the integral over this probability distribution.

It is possible to decompose into deterministic and stochastic components:

where is the value to choosing alternative at time and is written as

where now the expectation is taken over the .

3. The optimization problem follows a Markov decision process

The states follow a Markov chain. That is, attainment of state depends only on the state and not or any prior state.

Conditional value functions and choice probabilities

The value function in the previous section is called the conditional value function, because it is the value function conditional on choosing alternative in period . Writing the conditional value function in this way is useful in constructing formulas for the choice probabilities.

To write down the choice probabilities, the researcher must make an assumption about the distribution of the 's. As in static discrete choice models, this distribution can be assumed to be iid Type I extreme value, generalized extreme value, multinomial probit, or mixed logit.

For the case where is multinomial logit (i.e. drawn iid from the Type I extreme value distribution), the formulas for the choice probabilities would be:

Estimation

Estimation of dynamic discrete choice models is particularly challenging, due to the fact that the researcher must solve the backwards recursion problem for each guess of the structural parameters.

The most common methods used to estimate the structural parameters are maximum likelihood estimation and method of simulated moments.

Aside from estimation methods, there are also solution methods. Different solution methods can be employed due to complexity of the problem. These can be divided into full-solution methods and non-solution methods.

Full-solution methods

The foremost example of a full-solution method is the nested fixed point (NFXP) algorithm developed by John Rust in 1987. [2] The NFXP algorithm is described in great detail in its documentation manual. [3]

A recent work by Che-Lin Su and Kenneth Judd in 2012 [4] implements another approach (dismissed as intractable by Rust in 1987), which uses constrained optimization of the likelihood function, a special case of mathematical programming with equilibrium constraints (MPEC). Specifically, the likelihood function is maximized subject to the constraints imposed by the model, and expressed in terms of the additional variables that describe the model's structure. This approach requires powerful optimization software such as Artelys Knitro because of the high dimensionality of the optimization problem. Once it is solved, both the structural parameters that maximize the likelihood, and the solution of the model are found.

In the later article [5] Rust and coauthors show that the speed advantage of MPEC compared to NFXP is not significant. Yet, because the computations required by MPEC do not rely on the structure of the model, its implementation is much less labor intensive.

Despite numerous contenders, the NFXP maximum likelihood estimator remains the leading estimation method for Markov decision models. [5]

Non-solution methods

An alternative to full-solution methods is non-solution methods. In this case, the researcher can estimate the structural parameters without having to fully solve the backwards recursion problem for each parameter guess. Non-solution methods are typically faster while requiring more assumptions, but the additional assumptions are in many cases realistic.

The leading non-solution method is conditional choice probabilities, developed by V. Joseph Hotz and Robert A. Miller. [6]

Examples

Bus engine replacement model

The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type. [4]

The model is a simple regenerative optimal stopping stochastic dynamic problem faced by the decision maker, Harold Zurcher, superintendent of maintenance at the Madison Metropolitan Bus Company in Madison, Wisconsin. For every bus in operation in each time period Harold Zurcher has to decide whether to replace the engine and bear the associated replacement cost, or to continue operating the bus at an ever raising cost of operation, which includes insurance and the cost of lost ridership in the case of a breakdown.

Let denote the odometer reading (mileage) at period , cost of operating the bus which depends on the vector of parameters , cost of replacing the engine, and the discount factor. Then the per-period utility is given by

where denotes the decision (keep or replace) and and represent the component of the utility observed by Harold Zurcher, but not John Rust. It is assumed that and are independent and identically distributed with the Type I extreme value distribution, and that are independent of conditional on .

Then the optimal decisions satisfy the Bellman equation

where and are respectively transition densities for the observed and unobserved states variables. Time indices in the Bellman equation are dropped because the model is formulated in the infinite horizon settings, the unknown optimal policy is stationary, i.e. independent of time.

Given the distributional assumption on , the probability of particular choice is given by

where is a unique solution to the functional equation

It can be shown that the latter functional equation defines a contraction mapping if the state space is bounded, so there will be a unique solution for any , and further the implicit function theorem holds, so is also a smooth function of for each .

Estimation with nested fixed point algorithm

The contraction mapping above can be solved numerically for the fixed point that yields choice probabilities for any given value of . The log-likelihood function can then be formulated as

where and represent data on state variables (odometer readings) and decision (keep or replace) for individual buses, each in periods.

The joint algorithm for solving the fixed point problem given a particular value of parameter and maximizing the log-likelihood with respect to was named by John Rust nested fixed point algorithm (NFXP).

Rust's implementation of the nested fixed point algorithm is highly optimized for this problem, using Newton–Kantorovich iterations to calculate and quasi-Newton methods, such as the Berndt–Hall–Hall–Hausman algorithm, for likelihood maximization. [5]

Estimation with MPEC

In the nested fixed point algorithm, is recalculated for each guess of the parameters θ. The MPEC method instead solves the constrained optimization problem: [4]

This method is faster to compute than non-optimized implementations of the nested fixed point algorithm, and takes about as long as highly optimized implementations. [5]

Estimation with non-solution methods

The conditional choice probabilities method of Hotz and Miller can be applied in this setting. Hotz, Miller, Sanders, and Smith proposed a computationally simpler version of the method, and tested it on a study of the bus engine replacement problem. The method works by estimating conditional choice probabilities using simulation, then backing out the implied differences in value functions. [7] [8]

See also

Related Research Articles

Wiener process Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

Synchrotron radiation

Synchrotron radiation is the electromagnetic radiation emitted when charged particles are accelerated radially, e.g., when they are subject to an acceleration perpendicular to their velocity. It is produced, for example, in synchrotrons using bending magnets, undulators and/or wigglers. If the particle is non-relativistic, the emission is called cyclotron emission. If the particles are relativistic, sometimes referred to as ultrarelativistic, the emission is called synchrotron emission. Synchrotron radiation may be achieved artificially in synchrotrons or storage rings, or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization and the frequencies generated can range over the entire electromagnetic spectrum, which is also called continuum radiation.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a function on Euclidean space. It is usually denoted by the symbols ∇·∇, 2 or Δ. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf(p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f(p).

Gamma distribution Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two different parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ.
  2. With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.
Logistic regression Statistical model for a binary dependent variable

In statistics, the logistic model is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one.

In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.

Ornstein–Uhlenbeck process

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

Discrete choice

In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining “how much” as in problems with continuous choice variables, discrete choice analysis examines “which one.” However, discrete choice analysis can also be used to examine the chosen quantity when only a few distinct quantities must be chosen from, such as the number of vehicles a household chooses to own and the number of minutes of telecommunications service a customer decides to purchase. Techniques such as logistic regression and probit regression can be used for empirical analysis of discrete choice.

Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.

Mixed logit

Mixed logit is a fully general statistical model for examining discrete choices. It overcomes three important limitations of the standard logit model by allowing for random taste variation across choosers, unrestricted substitution patterns across choices, and correlation in unobserved factors over time. Mixed logit can choose any distribution for the random coefficients, unlike probit which is limited to the normal distribution. It is called "mixed logit" because the choice probability is a mixture of logits, with as the mixing distribution. It has been shown that a mixed logit model can approximate to any degree of accuracy any true random utility model of discrete choice, given appropriate specification of variables and the coefficient distribution.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

Viscoplasticity Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

In mathematical physics, the Berezin integral, named after Felix Berezin,, is a way to define integration for functions of Grassmann variables. It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.

Errors-in-variables models Regression models accounting for possible errors in independent variables

In statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.

Ordinal regression Regression analysis for modeling ordinal data

In statistics, ordinal regression is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant. It can be considered an intermediate problem between regression and classification. Examples of ordinal regression are ordered logit and ordered probit. Ordinal regression turns up often in the social sciences, for example in the modeling of human levels of preference, as well as in information retrieval. In machine learning, ordinal regression may also be called ranking learning.

In probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countable-infinite graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.

Symmetry in quantum mechanics Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

In image analysis, the generalized structure tensor (GST) is an extension of the Cartesian structure tensor to curvilinear coordinates. It is mainly used to detect and to represent the "direction" parameters of curves, just as the Cartesian structure tensor detects and represents the direction in Cartesian coordinates. Curve families generated by pairs of locally orthogonal functions have been the best studied.

Stochastic gradient Langevin dynamics

Stochastic gradient Langevin dynamics (SGLD), is an optimization technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models. Like stochastic gradient descent, SGLD is an iterative optimization algorithm which introduces additional noise to the stochastic gradient estimator used in SGD to optimize a differentiable objective function. Unlike traditional SGD, SGLD can be used for Bayesian learning, since the method produces samples from a posterior distribution of parameters based on available data. First described by Welling and Teh in 2011, the method has applications in many contexts which require optimization, and is most notably applied in machine learning problems.

References

  1. Keane & Wolpin 2009.
  2. Rust 1987.
  3. Rust, John (2008). "Nested fixed point algorithm documentation manual". Unpublished.
  4. 1 2 3 Su, Che-Lin; Judd, Kenneth L. (2012). "Constrained Optimization Approaches to Estimation of Structural Models". Econometrica. 80 (5): 2213–2230. doi:10.3982/ECTA7925. hdl: 10419/59626 . ISSN   1468-0262.
  5. 1 2 3 4 Iskhakov, Fedor; Lee, Jinhyuk; Rust, John; Schjerning, Bertel; Seo, Kyoungwon (2016). "Comment on "constrained optimization approaches to estimation of structural models"". Econometrica. 84 (1): 365–370. doi:10.3982/ECTA12605. ISSN   0012-9682.
  6. Hotz, V. Joseph; Miller, Robert A. (1993). "Conditional Choice Probabilities and the Estimation of Dynamic Models". Review of Economic Studies. 60 (3): 497–529. doi:10.2307/2298122. JSTOR   2298122.
  7. Aguirregabiria & Mira 2010.
  8. Hotz, V. J.; Miller, R. A.; Sanders, S.; Smith, J. (1994-04-01). "A Simulation Estimator for Dynamic Models of Discrete Choice". The Review of Economic Studies. Oxford University Press (OUP). 61 (2): 265–289. doi:10.2307/2297981. ISSN   0034-6527. JSTOR   2297981. S2CID   55199895.

Further reading