Optimal stopping

Last updated

In mathematics, the theory of optimal stopping [1] [2] or early stopping [3] is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.

Contents

Definition

Discrete time case

Stopping rule problems are associated with two objects:

  1. A sequence of random variables , whose joint distribution is something assumed to be known
  2. A sequence of 'reward' functions which depend on the observed values of the random variables in 1:

Given those objects, the problem is as follows:

Continuous time case

Consider a gain process defined on a filtered probability space and assume that is adapted to the filtration. The optimal stopping problem is to find the stopping time which maximizes the expected gain

where is called the value function. Here can take value .

A more specific formulation is as follows. We consider an adapted strong Markov process defined on a filtered probability space where denotes the probability measure where the stochastic process starts at . Given continuous functions , and , the optimal stopping problem is

This is sometimes called the MLS (which stand for Mayer, Lagrange, and supremum, respectively) formulation. [4]

Solution methods

There are generally two approaches to solving optimal stopping problems. [4] When the underlying process (or the gain process) is described by its unconditional finite-dimensional distributions, the appropriate solution technique is the martingale approach, so called because it uses martingale theory, the most important concept being the Snell envelope. In the discrete time case, if the planning horizon is finite, the problem can also be easily solved by dynamic programming.

When the underlying process is determined by a family of (conditional) transition functions leading to a Markov family of transition probabilities, powerful analytical tools provided by the theory of Markov processes can often be utilized and this approach is referred to as the Markov method. The solution is usually obtained by solving the associated free-boundary problems (Stefan problems).

A jump diffusion result

Let be a Lévy diffusion in given by the SDE

where is an -dimensional Brownian motion, is an -dimensional compensated Poisson random measure, , , and are given functions such that a unique solution exists. Let be an open set (the solvency region) and

be the bankruptcy time. The optimal stopping problem is:

It turns out that under some regularity conditions, [5] the following verification theorem holds:

If a function satisfies

then for all . Moreover, if

Then for all and is an optimal stopping time.

These conditions can also be written is a more compact form (the integro-variational inequality):

Examples

Coin tossing

(Example where converges)

You have a fair coin and are repeatedly tossing it. Each time, before it is tossed, you can choose to stop tossing it and get paid (in dollars, say) the average number of heads observed.

You wish to maximise the amount you get paid by choosing a stopping rule. If Xi (for i ≥ 1) forms a sequence of independent, identically distributed random variables with Bernoulli distribution

and if

then the sequences , and are the objects associated with this problem.

House selling

(Example where does not necessarily converge)

You have a house and wish to sell it. Each day you are offered for your house, and pay to continue advertising it. If you sell your house on day , you will earn , where .

You wish to maximise the amount you earn by choosing a stopping rule.

In this example, the sequence () is the sequence of offers for your house, and the sequence of reward functions is how much you will earn [6] .

Secretary problem

(Example where is a finite sequence)

You are observing a sequence of objects which can be ranked from best to worst. You wish to choose a stopping rule which maximises your chance of picking the best object.

Here, if (n is some large number) are the ranks of the objects, and is the chance you pick the best object if you stop intentionally rejecting objects at step i, then and are the sequences associated with this problem. This problem was solved in the early 1960s by several people. An elegant solution to the secretary problem and several modifications of this problem is provided by the more recent odds algorithm of optimal stopping (Bruss algorithm).

Search theory

Economists have studied a number of optimal stopping problems similar to the 'secretary problem', and typically call this type of analysis 'search theory'. Search theory has especially focused on a worker's search for a high-wage job, or a consumer's search for a low-priced good.

Parking problem

A special example of an application of search theory is the task of optimal selection of parking space by a driver going to the opera (theater, shopping, etc.). Approaching the destination, the driver goes down the street along which there are parking spaces – usually, only some places in the parking lot are free. The goal is clearly visible, so the distance from the target is easily assessed. The driver's task is to choose a free parking space as close to the destination as possible without turning around so that the distance from this place to the destination is the shortest. [7]

Option trading

In the trading of options on financial markets, the holder of an American option is allowed to exercise the right to buy (or sell) the underlying asset at a predetermined price at any time before or at the expiry date. Therefore, the valuation of American options is essentially an optimal stopping problem. Consider a classical Black–Scholes set-up and let be the risk-free interest rate and and be the dividend rate and volatility of the stock. The stock price follows geometric Brownian motion

under the risk-neutral measure.

When the option is perpetual, the optimal stopping problem is

where the payoff function is for a call option and for a put option. The variational inequality is

for all where is the exercise boundary. The solution is known to be [8]

On the other hand, when the expiry date is finite, the problem is associated with a 2-dimensional free-boundary problem with no known closed-form solution. Various numerical methods can, however, be used. See Black–Scholes model#American options for various valuation methods here, as well as Fugit for a discrete, tree based, calculation of the optimal time to exercise.

See also

Related Research Articles

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Martingale (probability theory)</span> Model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

<span class="mw-page-title-main">Markov property</span> Memoryless property of a stochastic process

In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process, which means that its future evolution is independent of its history. It is named after the Russian mathematician Andrey Markov. The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time.

In mathematics, a filtration is an indexed family of subobjects of a given algebraic structure , with the index running over some totally ordered index set , subject to the condition that

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

<span class="mw-page-title-main">Stopping time</span> Time at which a random variable stops exhibiting a behavior of interest

In probability theory, in particular in the study of stochastic processes, a stopping time is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

In mathematics, a stopped process is a stochastic process that is forced to assume the same value after a prescribed time.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, homology computation, denoising, mesh compression, and topological data analysis.

In mathematics and physics, the Magnus expansion, named after Wilhelm Magnus (1907–1990), provides an exponential representation of the solution of a first-order homogeneous linear differential equation for a linear operator. In particular, it furnishes the fundamental matrix of a system of linear ordinary differential equations of order n with varying coefficients. The exponent is aggregated as an infinite series, whose terms involve multiple integrals and nested commutators.

In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.

<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

Martin Hairer's theory of regularity structures provides a framework for studying a large class of subcritical parabolic stochastic partial differential equations arising from quantum field theory. The framework covers the Kardar–Parisi–Zhang equation, the equation and the parabolic Anderson model, all of which require renormalization in order to have a well-defined notion of solution.

The separation principle is one of the fundamental principles of stochastic control theory, which states that the problems of optimal control and state estimation can be decoupled under certain conditions. In its most basic formulation it deals with a linear stochastic system

The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.

The streamline upwind Petrov–Galerkin pressure-stabilizing Petrov–Galerkin formulation for incompressible Navier–Stokes equations can be used for finite element computations of high Reynolds number incompressible flow using equal order of finite element space by introducing additional stabilization terms in the Navier–Stokes Galerkin formulation.

In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a convergence that satisfies certain properties relating elements of X with the family of filters on X. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as non-topological convergences, that do not arise from any topological space. Examples of convergences that are in general non-topological include convergence in measure and almost everywhere convergence. Many topological properties have generalizations to convergence spaces.

References

Citations

  1. Chow, Y.S.; Robbins, H.; Siegmund, D. (1971). Great Expectations: The Theory of Optimal Stopping. Boston: Houghton Mifflin.
  2. Ferguson, Thomas S. (2007). Optimal Stopping and Applications. UCLA.
  3. Hill, Theodore P. (2009). "Knowing When to Stop". American Scientist . 97 (2): 126–133. doi:10.1511/2009.77.126. ISSN   1545-2786. S2CID   124798270.
    (For French translation, see cover story in the July issue of Pour la Science (2009).)
  4. 1 2 Peskir, Goran; Shiryaev, Albert (2006). Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics. ETH Zürich. doi:10.1007/978-3-7643-7390-0. ISBN   978-3-7643-2419-3.
  5. Øksendal, B.; Sulem, A. (2007). Applied Stochastic Control of Jump Diffusions. doi:10.1007/978-3-540-69826-5. ISBN   978-3-540-69825-8. S2CID   123531718.
  6. Ferguson, Thomas S.; Klass, Michael J. (2010). "House-hunting without second moments". Sequential Analysis . 29 (3): 236–244. doi:10.1080/07474946.2010.487423. ISSN   0747-4946.
  7. MacQueen, J.; Miller Jr., R.G. (1960). "Optimal persistence policies". Operations Research . 8 (3): 362–380. doi:10.1287/opre.8.3.362. ISSN   0030-364X.
  8. Karatzas, Ioannis; Shreve, Steven E. (1998). Methods of Mathematical Finance. Stochastic Modelling and Applied Probability. Vol. 39. doi:10.1007/b98840. ISBN   978-0-387-94839-3.

Sources