ERMETH

Last updated
The ERMETH at the Museum of Communication Bern ERMETH.jpg
The ERMETH at the Museum of Communication Bern
The ERMETH ERMETH ETH-Bib Ans 00290.jpg
The ERMETH

The ERMETH (Electronic Calculating Machine of the ETH) was one of the first computers in Europe and was developed and built by Eduard Stiefel and his team of the Institute for Applied Mathematics at the ETH Zurich between 1948 and 1956. It was in use until 1963 and is now displayed at the Museum of Communication Bern (Switzerland).

Contents

Models

Eduard Stiefel and his two senior assistants Heinz Rutishauser and Ambros Speiser were inspired by models in the USA and United Kingdom when developing the ERMETH. In 1949 Rutishauser and Speiser undertook study trips to Howard Aiken (Harvard University), John von Neumann (Princeton University) and to the University of Cambridge, which operated the EDSAC. In 1950, Stiefel rented for five years the only existing digital computer in continental Europe at that time, the Zuse Z4, completed by Konrad Zuse in 1945, for the ETH in order to gain experience with a calculating machine during the construction of the ERMETH.

Technical concept

The ERMETH had (in contrast to the Z4) a classical von Neumann architecture, i.e. it was a calculating machine in which program and processed data were stored in the same main memory; thus, numbers, as well as program parts, could be processed automatically. The ERMETH was designed for numerical calculations and worked in true decimal (not dual or hexadecimal) and had instructions for all four basic arithmetic operations with floating-point and fixed-point numbers, but not for processing letters. At the start of operation (1956), it consisted of devices (hardware) and stored user programs (software), but had no operating system, so that each user had to first read in his program, which had already been prepared on punch cards in machine language and then start it by setting the program counter to the first command. Under program control, user data was then read in (from punch cards) and parameter values were requested (via the keyboard) from the user.

Already in 1952, Heinz Rutishauser had presented the concept of the compiler for the use of machine-independent computer languages in his habilitation thesis on "automatic computation plan production". Thanks to the development of the higher programming language Algol (Algol 58 and Algol 60), machine-independent programming later became possible; for the input of letters, the ERMETH 1958 had to be supplemented with a paper tape reader.

The ERMETH had an arithmetic unit with 1,500 electron tubes. A 1.5-ton magnetic drum with space for 10,000 words to 16 decimal places (14 digits, sign, check digit), which rotated at 100 revolutions per second, served as the main memory. This also determined the operating speed of the ERMETH per command step, because the average access time to the commands and numbers stored on the drum was 5 milliseconds; the much higher operating speed of the electron tubes did not change this. The use of the 10'000 words of the working memory was very flexible. For each word (with 16 decimal places), either a floating-point number (11 valid digits, 3-digit exponent, sign and check digit), a fixed point number (14 digits, sign, check digit) or two instructions (2 digits for instruction type, 1 digit for index register, 4 digits for memory address) could be stored. An example: The compiler developed by Hans Rudolf Schwarz for Algol 60 programs occupied 4,000 memory cells with double instructions so that 6,000 cells remained available for an application program and its user data. If this was not enough, all 10,000 cells could be used, but only after overwriting the compiler. In this case, however, the compiler had to be reloaded before the next Algol program from punch cards, which alone took almost an hour.

For numerical data input, mainly punch cards of the type Remington-edge with 90 columns were used, later on also 5-channel punch tape for Algol program input. Data output was either on punched cards or on an IBM-typewriter, which, however, also output only digits. Thus, punched cards could also be used for intermediate storage of large amounts of data as secondary storage.

The electrical power consumption of the ERMETH was 30 kW. It reacted sensitively to fluctuations in the mains voltage, for example when the tram went into operation in the morning.

In 1955, Heinz Rutishauser became an associate professor at the ETH Zurich and Ambros Speiser left to the industry, becoming the founding director of the IBM Zurich Research Laboratory in Rüschlikon. From there on, the completion of the ERMETH was supervised by Peter Läuchli  [ de ] and Alfred Schai. [1] With various technical and financial setbacks, the ERMETH was built up as a one-off unit from 1955 onwards and gradually put into operation from 1956 onwards; it performed its task until October 1963, when it was dismantled and packed. A planned licensed version of ERMETH by a private company did not come about. [2] After spatial alterations a CDC 1604A of Control Data Corporation took its place from April 1964. The available computing power at ETH increased by a factor of 100 with the transition from the electromechanical Z4 to the ERMETH, but by a factor of 400 with the transition from the ERMETH with its time-critical magnetic drum memory to the fully electronic CDC 1604A.

Deployment

The ERMETH has been used in research and development for very different tasks. The employees of the Institute of Applied Mathematics used it for their own scientific topics to develop numerical algorithms and working aids in the sense of first operating system components. But they were also active as consultants and helpers for computing work of other ERMETH users. They came from the ETH and other universities as well as from industry and from civil and military federal agencies.

The ERMETH was also used in teaching. Optional programming lectures were held from the 1950s onwards, and there were also exercises (in groups) on the computer system. If students had written a program and transferred it to punched cards, they could hand in their punched card package and, depending on the program quality, received the expected or a wrong result or even a program abort printed out the next day.

ERMETH today

After its dismantling in 1963, the ERMETH was stored for the time being as an important exhibit for the planned Technorama in Winterthur and then exhibited there from 1982-2004. Since the end of 2006, it has been on permanent loan from ETH Zurich to the Museum of Communication in Bern.

See also

Related Research Articles

<span class="mw-page-title-main">ALGOL</span> Family of programming languages

ALGOL is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the Association for Computing Machinery (ACM) in textbooks and academic sources for more than thirty years.

<span class="mw-page-title-main">Binary-coded decimal</span> System of digitally encoding numbers

In computing and an electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications.

<span class="mw-page-title-main">Nibble</span> Unit of information, four bits

In computing, a nibble (occasionally nybble, nyble, or nybl to match the spelling of byte) is a four-bit aggregation, or half an octet. It is also known as half-byte or tetrade. In a networking or telecommunication context, the nibble is often called a semi-octet, quadbit, or quartet. A nibble has sixteen (24) possible values. A nibble can be represented by a single hexadecimal digit (0F) and called a hex digit.

Plankalkül is a programming language designed for engineering purposes by Konrad Zuse between 1942 and 1945. It was the first high-level programming language to be designed for a computer.

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">IBM 1401</span> 1960s decimal computer

The IBM 1401 is a variable-wordlength decimal computer that was announced by IBM on October 5, 1959. The first member of the highly successful IBM 1400 series, it was aimed at replacing unit record equipment for processing data stored on punched cards and at providing peripheral services for larger computers. The 1401 is considered to be the Ford Model-T of the computer industry, because it was mass-produced and because of its sales volume. Over 12,000 units were produced and many were leased or resold after they were replaced with newer technology. The 1401 was withdrawn on February 8, 1971.

<span class="mw-page-title-main">IBM 650</span> Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

ALGOL 58, originally named IAL, is one of the family of ALGOL computer programming languages. It was an early compromise design soon superseded by ALGOL 60. According to John Backus

The Zurich ACM-GAMM Conference had two principal motives in proposing the IAL: (a) To provide a means of communicating numerical methods and other procedures between people, and (b) To provide a means of realizing a stated process on a variety of machines...

<span class="mw-page-title-main">Z4 (computer)</span> German 1940s computer

The Z4 was arguably the world's first commercial digital computer. It was designed, and manufactured by early computer scientist Konrad Zuse's company Zuse Apparatebau, for an order placed by Henschel & Son, in 1942; though only partially assembled in Berlin, then completed in Göttingen, and not delivered by the defeat of Nazi Germany, in 1945. The Z4 was Zuse's final target for the Z3 design. Like the earlier Z2, it comprised a combination of mechanical memory and electromechanical logic, so was not a true electronic computer.

<span class="mw-page-title-main">Z22 (computer)</span> German 1950s computer

The Z22 was the seventh computer model Konrad Zuse developed. One of the early commercial computers, the Z22's design was finished about 1955. The major version jump from Z11 to Z22 was due to the use of vacuum tubes, as opposed to the electromechanical systems used in earlier models. The first machines built were shipped to Berlin and Aachen.

<span class="mw-page-title-main">Bendix G-15</span>

The Bendix G-15 is a computer introduced in 1956 by the Bendix Corporation, Computer Division, Los Angeles, California. It is about 5 by 3 by 3 feet and weighs about 966 pounds (438 kg). The G-15 has a drum memory of 2,160 29-bit words, along with 20 words used for special purposes and rapid-access storage. The base system, without peripherals, cost $49,500. A working model cost around $60,000. It could also be rented for $1,485 per month. It was meant for scientific and industrial markets. The series was gradually discontinued when Control Data Corporation took over the Bendix computer division in 1963.

The ICT 1301 and its smaller derivative ICT 1300 were early business computers from International Computers and Tabulators. Typical of mid-sized machines of the era, they used core memory, drum storage and punched cards, but they were unusual in that they were based on decimal logic instead of binary.

<span class="mw-page-title-main">Friedrich L. Bauer</span> German computer scientist

Friedrich Ludwig "Fritz" Bauer was a German pioneer of computer science and professor at the Technical University of Munich.

<span class="mw-page-title-main">Eduard Stiefel</span> Swiss mathematician

Eduard L. Stiefel was a Swiss mathematician. Together with Cornelius Lanczos and Magnus Hestenes, he invented the conjugate gradient method, and gave what is now understood to be a partial construction of the Stiefel–Whitney classes of a real vector bundle, thus co-founding the study of characteristic classes.

The Swiss Mathematical Society, founded in Basel on September 4, 1910, is the national mathematical society of Switzerland and a member society of the European Mathematical Society. It is notably running the scholarly journal Commentarii Mathematici Helvetici and Elemente der Mathematik, both currently published by the European Mathematical Society.

Klaus Samelson was a German mathematician, physicist, and computer pioneer in the area of programming language translation and push-pop stack algorithms for sequential formula translation on computers.

<span class="mw-page-title-main">Heinz Rutishauser</span> Swiss mathematician and computer scientist (1918-70)

Heinz Rutishauser was a Swiss mathematician and a pioneer of modern numerical mathematics and computer science.

<span class="mw-page-title-main">Ambros Speiser</span> Swiss engineer and scientist

Ambrosius Paul Speiser was a Swiss engineer and scientist. He led the development of the first Swiss computer.

Hermann Bottenbruch was a German mathematician and computer scientist.

Johann Jakob Burckhardt was a Swiss mathematician and crystallographer. He was an invited speaker at the International Congress of Mathematicians in 1936 in Oslo.

References

  1. History of the Seminar for Applied Mathematics, retrieved 2021-04-24.
  2. Brotherer, Herbert (2015). Milestones of computer technology. Zur Geschichte der Mathematik und der Informatik. Berlin/Boston: De Gruyter. pp. 484–506. ISBN   978-3-11-037547-3.