ER oxidoreductin

Last updated
Endoplasmic reticulum oxidoreductin 1
PDB 1rp4 EBI.jpg
Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. [1]
Identifiers
SymbolERO1
Pfam PF04137
InterPro IPR007266
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1rp4 , 1rq1

ER oxidoreductin 1 (Ero1) is an oxidoreductase enzyme that catalyses the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum (ER) of eukaryotes. [2] [3] ER Oxidoreductin 1 (Ero1) is a conserved, luminal, glycoprotein that is tightly associated with the ER membrane, and is essential for the oxidation of protein dithiols. Since disulfide bond formation is an oxidative process, the major pathway of its catalysis has evolved to utilise oxidoreductases, which become reduced during the thiol-disulfide exchange reactions that oxidise the cysteine thiol groups of nascent polypeptides. Ero1 is required for the introduction of oxidising equivalents into the ER and their direct transfer to protein disulfide isomerase (PDI), thereby ensuring the correct folding and assembly of proteins that contain disulfide bonds in their native state.

Ero1 exists in two isoforms: Ero1-α and Ero1-β. Ero1-α is mainly induced by hypoxia (HIF-1), whereas Ero1-β is mainly induced by the unfolded protein response (UPR). [4]

During endoplasmic reticulum stress (such as occurs in beta cells of the pancreas or in macrophages causing atherosclerosis), CHOP can induce activation of Ero1, causing calcium release from the endoplasmic reticulum into the cytoplasm, resulting in apoptosis. [5]

Homologues of the Saccharomyces cerevisiae Ero1 proteins have been found in all eukaryotic organisms examined, and contain seven cysteine residues that are absolutely conserved, including three that form the sequence Cys–X–X–Cys–X–X–Cys (where X can be any residue).

The mechanism of thiol–disulfide exchange between oxidoreductases

The mechanism of thiol–disulfide exchange between oxidoreductases is understood to begin with the nucleophilic attack on the sulfur atoms of a disulfide bond in the oxidised partner, by a thiolate anion derived from a reactive cysteine in a reduced partner. This generates mixed disulfide intermediates, and is followed by a second, this time intramolecular, nucleophilic attack by the remaining thiolate anion in the formerly reduced partner, to liberate both oxidoreductases. The balance of evidence discussed thus far supports a model in which oxidising equivalents are sequentially transferred from Ero1 via a thiol–disulfide exchange reaction to PDI, with PDI then undergoing a thiol–disulfide exchange with the nascent polypeptide, thereby enabling the formation of disulfide bonds within the nascent polypeptide.

Related Research Articles

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, but interestingly, both D and L-cysteine are found in nature with D-cysteine having been found in developing brain. Cysteine is named after its discovery in urine, which comes from the urinary bladder or cyst, from kystis "bladder".

In chemistry, a disulfide is a compound containing a R−S−S−R′ functional group or the S2−
2
anion. The linkage is also called an SS-bond or sometimes a disulfide bridge and usually derived from two thiol groups.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Cystine</span> Chemical compound

Cystine is the oxidized derivative of the amino acid cysteine and has the formula (SCH2CH(NH2)CO2H)2. It is a white solid that is poorly soluble in water. As a residue in proteins, cystine serves two functions: a site of redox reactions and a mechanical linkage that allows proteins to retain their three-dimensional structure.

<span class="mw-page-title-main">Post-translational modification</span> Biological processes

Post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes translating mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

<span class="mw-page-title-main">Protein disulfide-isomerase</span> Class of enzymes

Protein disulfide isomerase, or PDI, is an enzyme in the endoplasmic reticulum (ER) in eukaryotes and the periplasm of bacteria that catalyzes the formation and breakage of disulfide bonds between cysteine residues within proteins as they fold. This allows proteins to quickly find the correct arrangement of disulfide bonds in their fully folded state, and therefore the enzyme acts to catalyze protein folding.

<span class="mw-page-title-main">Dithiothreitol</span> Chemical compound

Dithiothreitol (DTT) is an organosulfur compound with the formula (CH CH2SH)2. A colorless compound, it is classified as a dithiol and a diol. DTT is redox reagent also known as Cleland's reagent, after W. Wallace Cleland. The reagent is commonly used in its racemic form. Its name derives from the four-carbon sugar, threose. DTT has an epimeric ('sister') compound, dithioerythritol (DTE).

Oxidative protein folding is a process that is responsible for the formation of disulfide bonds between cysteine residues in proteins. The driving force behind this process is a redox reaction, in which electrons pass between several proteins and finally to a terminal electron acceptor.

<span class="mw-page-title-main">Tissue transglutaminase</span> Protein-coding gene in the species Homo sapiens

Tissue transglutaminase is a 78-kDa, calcium-dependent enzyme of the protein-glutamine γ-glutamyltransferases family. Like other transglutaminases, it crosslinks proteins between an ε-amino group of a lysine residue and a γ-carboxamide group of glutamine residue, creating an inter- or intramolecular bond that is highly resistant to proteolysis. Aside from its crosslinking function, tTG catalyzes other types of reactions including deamidation, GTP-binding/hydrolyzing, and isopeptidase activities. Unlike other members of the transglutaminase family, tTG can be found both in the intracellular and the extracellular spaces of various types of tissues and is found in many different organs including the heart, the liver, and the small intestine. Intracellular tTG is abundant in the cytosol but smaller amounts can also be found in the nucleus and the mitochondria. Intracellular tTG is thought to play an important role in apoptosis. In the extracellular space, tTG binds to proteins of the extracellular matrix (ECM), binding particularly tightly to fibronectin. Extracellular tTG has been linked to cell adhesion, ECM stabilization, wound healing, receptor signaling, cellular proliferation, and cellular motility.

<span class="mw-page-title-main">Thioredoxin fold</span>

The thioredoxin fold is a protein fold common to enzymes that catalyze disulfide bond formation and isomerization. The fold is named for the canonical example thioredoxin and is found in both prokaryotic and eukaryotic proteins. It is an example of an alpha/beta protein fold that has oxidoreductase activity. The fold's spatial topology consists of a four-stranded antiparallel beta sheet sandwiched between three alpha helices. The strand topology is 2134 with 3 antiparallel to the rest.

The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. It has been found to be conserved between mammalian species, as well as yeast and worm organisms.

<span class="mw-page-title-main">PDIA3</span> Protein-coding gene in the species Homo sapiens

Protein disulfide-isomerase A3 (PDIA3), also known as glucose-regulated protein, 58-kD (GRP58), is an isomerase enzyme encoded by the autosomal gene PDIA3 in humans. This protein localizes to the endoplasmic reticulum (ER) and interacts with lectin chaperones calreticulin and calnexin (CNX) to modulate folding of newly synthesized glycoproteins. It is thought that complexes of lectins and this protein mediate protein folding by promoting formation of disulfide bonds in their glycoprotein substrates.

In enzymology, a sulfiredoxin is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Binding immunoglobulin protein</span> Protein-coding gene in the species Homo sapiens

Binding immunoglobulin protein (BiPS) also known as 78 kDa glucose-regulated protein (GRP-78) or heat shock 70 kDa protein 5 (HSPA5) is a protein that in humans is encoded by the HSPA5 gene.

<span class="mw-page-title-main">ERO1L</span> Protein-coding gene in the species Homo sapiens

ERO1-like protein alpha is a protein that in humans is encoded by the ERO1L gene.

<span class="mw-page-title-main">ERO1LB</span> Protein-coding gene in the species Homo sapiens

ERO1-like protein beta is a protein that in humans is encoded by the ERO1LB gene.

<span class="mw-page-title-main">DsbA</span>

DsbA is a bacterial thiol disulfide oxidoreductase (TDOR). DsbA is a key component of the Dsb family of enzymes. DsbA catalyzes intrachain disulfide bond formation as peptides emerge into the cell's periplasm.

Thioredoxins are small disulfide-containing redox proteins that have been found in all the kingdoms of living organisms. Thioredoxin serves as a general protein disulfide oxidoreductase. It interacts with a broad range of proteins by a redox mechanism based on reversible oxidation of 2 cysteine thiol groups to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. The net result is the covalent interconversion of a disulfide and a dithiol.

<span class="mw-page-title-main">DsbC protein family</span>

DsbC (Disulfide bond C) is a prokaryotic disulfide bond isomerase. The formation of native disulfide bonds play an important role in the proper folding of proteins and stabilize tertiary structures of the protein. DsbC is one of 6 proteins in the Dsb family in prokaryotes. The other proteins are DsbA, DsbB, DsbD, DsbE and DsbG. These enzymes work in tandem with each other to form disulfide bonds during the expression of proteins. DsbC and DsbG act as proofreaders of the disulfide bonds that are formed. They break non-native disulfide bonds that were formed and act as chaperones for the formation of native disulfide bonds. The isomerization of disulfide bonds occurs in the periplasm.

<span class="mw-page-title-main">PDIA2</span> Protein-coding gene in the species Homo sapiens

Protein disulfide isomerase family A member 2 is a protein that in humans is encoded by the PDIA2 gene.

References

  1. Gross E, Kastner DB, Kaiser CA, Fass D (May 2004). "Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell". Cell. 117 (5): 601–10. doi: 10.1016/S0092-8674(04)00418-0 . PMID   15163408. S2CID   18346376.
  2. Frand AR, Cuozzo JW, Kaiser CA (2000). "Pathways for protein disulphide bond formation". Trends Cell Biol. 10 (5): 203–10. doi:10.1016/S0962-8924(00)01745-1. PMID   10754564.
  3. Frand AR, Kaiser CA (2000). "Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum". Mol. Biol. Cell. 11 (9): 2833–43. doi:10.1091/mbc.11.9.2833. PMC   14959 . PMID   10982384.
  4. Gess B, Hofbauer KH, Wenger RH, Lohaus C, Meyer HE, Kurtz A (2003). "The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha" (PDF). European Journal of Biochemistry . 270 (10): 2228–2235. doi:10.1046/j.1432-1033.2003.03590.x. PMID   12752442. Archived from the original (PDF) on 2021-10-16. Retrieved 2020-06-07.
  5. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (2009). "Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis". Journal of Cell Biology . 186 (6): 783–792. doi:10.1083/jcb.200904060. PMC   2753154 . PMID   19752026.