Eben Matlis

Last updated

Eben Matlis (August 28, 1923 - March 27, 2015) was a mathematician known for his contributions to the theory of rings and modules, especially for his work with injective modules over commutative Noetherian rings, and his introduction of Matlis duality. [1]

Contents

Matlis earned his Ph.D. at the University of Chicago in 1958, [2] with Irving Kaplansky as advisor. He is an emeritus professor at Northwestern University [3] and was a member of the Institute for Advanced Study from August 1962 to June 1963. [2]

Selected works

Related Research Articles

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, specifically in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.

In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring R with finite injective dimension as an R-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense.

In mathematics, particularly in algebra, the injective hull of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in.

In ring theory and homological algebra, the global dimension of a ring A denoted gl dim A, is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all A-modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings. By a theorem of Jean-Pierre Serre, global dimension can be used to characterize within the class of commutative Noetherian local rings those rings which are regular. Their global dimension coincides with the Krull dimension, whose definition is module-theoretic.

<span class="mw-page-title-main">Irving Kaplansky</span>

Irving Kaplansky was a mathematician, college professor, author, and amateur musician.

In mathematics, a (left) coherent ring is a ring in which every finitely generated left ideal is finitely presented.

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.

Maurice Auslander was an American mathematician who worked on commutative algebra, homological algebra and the representation theory of Artin algebras. He proved the Auslander–Buchsbaum theorem that regular local rings are factorial, the Auslander–Buchsbaum formula, and, in collaboration with Idun Reiten, introduced Auslander–Reiten theory and Auslander algebras.

In the branch of mathematics called category theory, a hopfian object is an object A such that any epimorphism of A onto A is necessarily an automorphism. The dual notion is that of a cohopfian object, which is an object B such that every monomorphism from B into B is necessarily an automorphism. The two conditions have been studied in the categories of groups, rings, modules, and topological spaces.

In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by Matlis (1958).

This is a glossary of commutative algebra.

In mathematics, the ith Bass number of a module M over a local ring R with residue field k is the k-dimension of . More generally the Bass number of a module M over a ring R at a prime ideal p is the Bass number of the localization of M for the localization of R. Bass numbers were introduced by Hyman Bass (1963, p.11).

In algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element of the ring. In other words, a module is torsion free if its torsion submodule is reduced to its zero element.

In commutative algebra, Grothendieck local duality is a duality theorem for cohomology of modules over local rings, analogous to Serre duality of coherent sheaves.

In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality.

In abstract algebra, the Eakin–Nagata theorem states: given commutative rings such that is finitely generated as a module over , if is a Noetherian ring, then is a Noetherian ring.

References

  1. "Eben Matlis". Findagrave. Retrieved 4 May 2019.
  2. 1 2 "Eben Matlis". Institute for Advanced Study. 9 December 2019.
  3. Date information sourced from Library of Congress Authorities data, via corresponding WorldCat Identities  linked authority file (LAF) .