Eburonian

Last updated

The Eburonian (German : Eburon or Eburonium), or, much less commonly, the Eburonian Stage, is a glacial complex in the Calabrian age of the Pleistocene epoch and lies between the Tegelen and the Waalian interglacial. The transition from the Tegelen to the Eburonian started about 1.78 million years ago, lasted 480,000 years (to 1.3 million years ago). In geologic strata, at its base, from its startpoint, the Neogene underlies different Gelasian deposits starkly in much of the Netherlands. [1]

Contents

Discovery

As early as the 1920s, the names of the three well known glaciations - the Elster, the Saale and the Weichselian - had become established at the recommendation of Konrad Keilhack and Paul Woldstedt. After Penck & Brückner successfully identified a fourth glaciation in the Alps, there were many attempts to find traces of this ice age in the northern Central Europe. Investigations in the Netherlands, into both sedimentology and vegetation, revealed that the number of cold and warm periods must have been considerably greater. In 1957 Zagwijn expanded the hitherto known glacials and interglacials (the Weichselian, Eemian, Saalian, Holstein, Elster and Cromer) by the Menapian glacial, Waalian interglacial, Eburonian glacial, Tegelen interglacial and Pre-Tegelen glacial. After the initial view that there had been continuous warm or cold periods, it quickly became clear that we were looking at "complexes" that included both warm and cold periods. The Eburonian was subdivided into four cold periods, each separated from one another by warmer periods.

Climate & vegetation

Very little is known about the development of the climate and vegetation during the Eburonian. The cold period is subdivided into 7 climatic sections, which differ in their average temperatures. As in the cold periods of the Menapian glacial and the Tegelen interglacial, the average temperature of the Eburonian in summer was about ca. 10 °C and the average annual temperature was -6 to -4 °C. During the warmer sections of the Eburonian, the land was covered by cool coniferous forests; during the cold periods the vegetation was open and treeless.

See also

Historical names of the "four major" glacials in four regions.
RegionGlacial 1Glacial 2Glacial 3Glacial 4
Alps Günz Mindel Riss Würm
North EuropeEburonian Elsterian Saalian Weichselian
British Isles Beestonian Anglian Wolstonian Devensian
Midwest U.S. Nebraskan Kansan Illinoian Wisconsinan
Historical names of interglacials.
RegionInterglacial 1Interglacial 2Interglacial 3
Alps Günz-Mindel Mindel-Riss Riss-Würm
North Europe Waalian Holsteinian Eemian
British Isles Cromerian Hoxnian Ipswichian
Midwest U.S. Aftonian Yarmouthian Sangamonian

Related Research Articles

Ice age Period of long-term reduction in temperature of Earths surface and atmosphere

An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and greenhouse periods, during which there are no glaciers on the planet. Earth is currently in the Quaternary glaciation. Individual pulses of cold climate within an ice age are termed glacial periods, and intermittent warm periods within an ice age are called interglacials or interstadials.

Pleistocene First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the earth’s most recent period of repeated glaciations. Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος and καινός (kainós, "new".

Last Glacial Period Period of major glaciations of the northern hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP) occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago. The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The definition of the Quaternary as beginning 2.58 million years ago (Mya) is based on the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Mya, in the mid-Cenozoic. The term Late Cenozoic Ice Age is used to include this early phase.

Timeline of glaciation Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

Würm glaciation Last glacial period in the Alpine region

The Würm glaciation or Würm stage, usually referred to in the literature as the Würm, was the last glacial period in the Alpine region. It is the youngest of the major glaciations of the region that extended beyond the Alps themselves. Like most of the other ice ages of the Pleistocene epoch, it is named after a river, in this case the Würm in Bavaria, a tributary of the Amper. The Würm ice age can be dated to about 115,000 to 11,700 years ago, but sources differ about the dates, depending on whether the long transition phases between the glacials and interglacials are allocated to one or other of those periods. The average annual temperatures during the Würm ice age in the Alpine Foreland were below −3 °C. That has been determined from changes in the vegetation, as well as differences in the facies.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

The Cromerian Stage or Cromerian Complex, also called the Cromerian, is a stage in the Pleistocene glacial history of north-western Europe, mostly occurring more than half a million years ago. It is named after the East Anglian town of Cromer in Great Britain where interglacial deposits that accumulated during part of this stage were first discovered. The stratotype for this interglacial is the Cromer Forest Bed situated at the bottom of the coastal cliff near West Runton. The Cromerian stage preceded the Anglian and Elsterian glacials and show an absence of glacial deposits in western Europe, which led to the historical terms Cromerian interglacial and the Cromerian warm period. It is now known that the Cromerian consisted of multiple glacial and interglacial periods.

The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.

Elster glaciation

The Elster glaciation or, less commonly, the Elsterian glaciation, in the older and popular scientific literature also called the Elster Ice Age (Elster-Eiszeit), is the oldest known ice age that resulted in the large-scale glaciation of North Germany. It took place 500,000–300,000 years ago. It succeeded a long period of rather warmer average temperatures, the Cromerian Complex. The Elster was followed by the Holstein interglacial and the Saale glaciation. The glacial period is named after the White Elster, a right tributary of the Saale.

The Beestonian Stage is an early Pleistocene stage used in the British Isles. It is named after Beeston Cliffs near West Runton in Norfolk where deposits from this stage are preserved.

Stadials and interstadials are phases dividing the Quaternary period, or the last 2.6 million years. Stadials are periods of colder climate while interstadials are periods of warmer climate.

Marine isotope stages Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

Riss glaciation

The Riss glaciation, Riss Glaciation, Riss ice age, Riss Ice Age, Riss glacial or Riss Glacial is the second youngest glaciation of the Pleistocene epoch in the traditional, quadripartite glacial classification of the Alps. The literature variously dates it to between about 300,000 to 130,000 years ago and 347,000 to 128,000 years ago. It coincides with the Saale glaciation of North Germany. The name goes back to Albrecht Penck and Eduard Brückner who named this cold period after the river Riss in Upper Swabia in their three-volume work Die Alpen im Eiszeitalter published between 1901 and 1909.

Interglacial Geological interval of warmer temperature that separates glacial periods within an ice age

An interglacial period is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

Quaternary glaciation Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma and is ongoing. Although geologists describe the entire time period up to the present as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period during the Pleistocene or the Pleistocene epoch in general. Since planet Earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with the Earth now experiencing an interglacial period.

Saale glaciation

The Saale glaciation or Saale Glaciation, sometimes referred to as the Saalian glaciation, Saale cold period, Saale complex (Saale-Komplex) or Saale glacial stage, covers the middle of the three large glaciations in Northern Europe and the northern parts of Eastern, Central and Western Europe by the Scandinavian Inland Ice Sheet between the older Elster glaciation and the younger Weichselian glaciation.

Weichselian glaciation Last glacial period and its associated glaciation in northern parts of Europe

Weichselian glaciation refers to the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, the March of Brandenburg and Northwest Russia.

Biber or the Biber Complex is a timespan approximately 2.6–1.8 million years ago in the glacial history of the Alps. Biber corresponds to the Gelasian age in the international geochronology, which since 2009 is regarded as the first age of the Quaternary period. Deep sea core samples have identified approximately 20 glacial cycles of varying intensity during Biber.

Late Cenozoic Ice Age Ice age of the last 34 million years, in particular in Antarctica

The Late Cenozoic Ice Age, or Antarctic Glaciation began 33.9 million years ago at the Eocene-Oligocene Boundary and is ongoing. It is Earth's current ice age or icehouse period. Its beginning is marked by the formation of the Antarctic ice sheets. The Late Cenozoic Ice Age gets its name due to the fact that it covers roughly the last half of Cenozoic era so far.

The Tiglian, also referred to as the Tegelen, is a temperate complex stage in the glacial history of Northern Europe. It is preceded by the Praetiglian (stage). The stage was introduced by Zagwijn in 1957 based on geological formations in Tegelen in southern Netherlands. Originally, it was thought to be part of a sequence of glacials and interglacials, namely Praetiglian (cold), Tiglian (warm), Eburonian (cold), Waalian (warm), Menapian (cold), and Bavelian (warm).

References

  1. Hey, R. W. The Plio-Pleistocene of England and Iceland in Van Couvering, John A. (editor), (1997) The Pleistocene Boundary and the Beginning of the Quaternary, Cambridge, Cambridge University Press, p. 183. ISBN   0-521-61702-2.

Literature