Gelasian | |||||||||
---|---|---|---|---|---|---|---|---|---|
Chronology | |||||||||
| |||||||||
Formerly part of | Tertiary Period/System Pliocene Epoch/Series | ||||||||
Etymology | |||||||||
Name formality | Formal | ||||||||
Usage information | |||||||||
Celestial body | Earth | ||||||||
Regional usage | Global (ICS) | ||||||||
Time scale(s) used | ICS Time Scale | ||||||||
Definition | |||||||||
Chronological unit | Age | ||||||||
Stratigraphic unit | Stage | ||||||||
Time span formality | Formal | ||||||||
Lower boundary definition |
| ||||||||
Lower boundary GSSP | Monte San Nicola Section, Gela, Sicily, Italy 37°08′49″N14°12′13″E / 37.1469°N 14.2035°E | ||||||||
Lower GSSP ratified | 1996 (as base of Gelasian) [3] | ||||||||
Upper boundary definition | Approximately 8 m after the end of magnetic polarity chronozone C2n (Olduvai). | ||||||||
Upper boundary GSSP | Vrica Section, Calabria, Italy 39°02′19″N17°08′05″E / 39.0385°N 17.1348°E | ||||||||
Upper GSSP ratified | 5 December 2011 (as base of Calabrian) [4] |
The Gelasian is an age in the international geologic timescale or a stage in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary Period/System and Pleistocene Epoch/Series. It spans the time between 2.58 Ma (million years ago) and 1.80 Ma. [5] It follows the Piacenzian Stage (part of the Pliocene) and is followed by the Calabrian Stage.
The Gelasian was introduced in the geologic timescale in 1998. [6] It is named after the Sicilian city of Gela in the south of the island. In 2009 it was moved from the Pliocene to the Pleistocene so that the geologic time scale would be more consistent with the key changes in Earth's climate, oceans, and biota that occurred 2.58 million years ago. [7]
The base of the Gelasian is defined magnetostratigraphically as the base of the Matuyama (C2r) chronozone (at the Gauss-Matuyama magnetostratigraphic boundary), isotopic stage 103. Above this line notable extinctions of the calcareous nannofossils occur: Discoaster pentaradiatus and Discoaster surculus. [8] [6] The GSSP for the Gelasian is located at the Monte Sant Nicola near Gela.
The top of the Gelasian is defined magnetostratigraphically as the end of the Olduvai (C2n) chronozone, and faunally as the extinction level of the calcareous nannofossil Discoaster brouweri (base of biozone CN13). Above the Gelasian as the first occurrences of the calcareous nanofossil Gephyrocapsa sp. and the extinction level of the planktonic foraminifer Globigerinoides extremus [9] [6]
During the Gelasian the ice sheets in the Northern Hemisphere began to grow, which is seen as the beginning of the Quaternary ice age. Deep sea core samples have identified approximately 40 marine isotope stages (MIS 103 – MIS 64) during the age. Thus, there have probably been about 20 glacial cycles of varying intensity during the Gelasian.
In the regional glacial history of the Alps, this age is now called Biber. It corresponds to Pre-Tegelen and Tegelen in Northern Europe. [10]
During the Gelasian, the Red Crag Formation of Butley, the Newbourn Crag, the Norwich Crag Formation and the Weybourne Crag Formation (all from East Anglia, England) were deposited. The Gelasian is an equivalent of the Praetiglian and Tiglian Stages as defined in the Netherlands, which are commonly used in northwestern Europe.
The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago (Mya) to the beginning of the present Quaternary Period 2.58 million years ago. It is the second period of the Cenozoic and the eleventh period of the Phanerozoic. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868). The earlier term Tertiary Period was used to define the span of time now covered by Paleogene and Neogene and, despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use.
The Pleistocene is the geological epoch that lasted from c. 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος (pleîstos) 'most' and καινός 'new'.
The Quaternary is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS), as well as the current and most recent of the twelve periods of the Phanerozoic eon. It follows the Neogene Period and spans from 2.58 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene and the Holocene ; a proposed third epoch, the Anthropocene, was rejected in 2024 by IUGS, the governing body of the ICS.
Tertiary is an obsolete term for the geologic period from 66 million to 2.6 million years ago. The period began with the extinction of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start of the Cenozoic Era, and extended to the beginning of the Quaternary glaciation at the end of the Pliocene Epoch. The time span covered by the Tertiary has no exact equivalent in the current geologic time system, but it is essentially the merged Paleogene and Neogene periods, which are informally called the Early Tertiary and the Late Tertiary, respectively. Even though the term Tertiary has been declared obsolete, some high school curriculums still teach the geologic periods as Precambrian, Paleozoic, Mesozoic, (Cenozoic-)Tertiary and (Cenozoic-)Quaternary.
The International Commission on Stratigraphy (ICS), sometimes unofficially referred to as the "International Stratigraphic Commission", is a daughter or major subcommittee grade scientific daughter organization that concerns itself with stratigraphical, geological, and geochronological matters on a global scale.
The Zanclean is the lowest stage or earliest age on the geologic time scale of the Pliocene. It spans the time between 5.332 ± 0.005 Ma and 3.6 ± 0.005 Ma. It is preceded by the Messinian Age of the Miocene Epoch, and followed by the Piacenzian Age.
The Piacenzian is in the international geologic time scale the upper stage or latest age of the Pliocene. It spans the time between 3.6 ± 0.005 Ma and 2.58 Ma. The Piacenzian is after the Zanclean and is followed by the Gelasian.
The Messinian is in the geologic timescale the last age or uppermost stage of the Miocene. It spans the time between 7.246 ± 0.005 Ma and 5.333 ± 0.005 Ma. It follows the Tortonian and is followed by the Zanclean, the first age of the Pliocene.
Calabrian is a subdivision of the Pleistocene Epoch of the geologic time scale, defined as 1.8 Ma—774,000 years ago ± 5,000 years, a period of ~1.026 million years.
The Serravallian is, in the geologic timescale, an age or a stage in the middle Miocene Epoch/Series, which spans the time between 13.82 Ma and 11.63 Ma. The Serravallian follows the Langhian and is followed by the Tortonian.
The Tortonian is in the geologic time scale an age or stage of the late Miocene that spans the time between 11.608 ± 0.005 Ma and 7.246 ± 0.005 Ma . It follows the Serravallian and is followed by the Messinian.
The Rupelian is, in the geologic timescale, the older of two ages or the lower of two stages of the Oligocene Epoch/Series. It spans the time between 33.9 and27.82 Ma. It is preceded by the Priabonian Stage and is followed by the Chattian Stage.
The Chattian is, in the geologic timescale, the younger of two ages or upper of two stages of the Oligocene Epoch/Series. It spans the time between 27.82 and23.03 Ma. The Chattian is preceded by the Rupelian and is followed by the Aquitanian.
The Santonian is an age in the geologic timescale or a chronostratigraphic stage. It is a subdivision of the Late Cretaceous Epoch or Upper Cretaceous Series. It spans the time between 86.3 ± 0.7 mya and 83.6 ± 0.7 mya. The Santonian is preceded by the Coniacian and is followed by the Campanian.
The Hettangian is the earliest age and lowest stage of the Jurassic Period of the geologic timescale. It spans the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma. The Hettangian follows the Rhaetian and is followed by the Sinemurian.
In the geologic timescale, the Sinemurian is an age and stage in the Early or Lower Jurassic Epoch or Series. It spans the time between 199.5 ±0.3 Ma and 192.9 ±0.3 Ma. The Sinemurian is preceded by the Hettangian and is followed by the Pliensbachian.
The Pliensbachian is an age of the geologic timescale and stage in the stratigraphic column. It is part of the Early or Lower Jurassic Epoch or Series and spans the time between 192.9 ±0.3 Ma and 184.2 ±0.3 Ma. The Pliensbachian is preceded by the Sinemurian and followed by the Toarcian.
A chronozone or chron is a unit in chronostratigraphy, defined by events such as geomagnetic reversals (magnetozones), or based on the presence of specific fossils . According to the International Commission on Stratigraphy, the term "chronozone" refers to the rocks formed during a particular time period, while "chron" refers to that time period.
The Early Pleistocene is an unofficial sub-epoch in the international geologic timescale in chronostratigraphy, representing the earliest division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently estimated to span the time between 2.580 ± 0.005 Ma and 0.773 ± 0.005 Ma. The term Early Pleistocene applies to both the Gelasian Age and the Calabrian Age.