Echinomycin

Last updated
Echinomycin
Echinomycin.png
Names
Other names
Quinomycin A; Levomycin
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.164.832 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C51H64N12O12S2/c1-25(2)38-49(72)74-22-36(59-42(65)34-21-53-30-17-13-15-19-32(30)57-34)44(67)55-28(6)46(69)63(10)40-48(71)62(9)39(26(3)4)50(73)75-23-35(58-41(64)33-20-52-29-16-12-14-18-31(29)56-33)43(66)54-27(5)45(68)60(7)37(47(70)61(38)8)24-77-51(40)76-11/h12-21,25-28,35-40,51H,22-24H2,1-11H3,(H,54,66)(H,55,67)(H,58,64)(H,59,65)/t27-,28-,35+,36+,37-,38-,39-,40+,51?/m0/s1 X mark.svgN
    Key: AUJXLBOHYWTPFV-VITLIGDRSA-N X mark.svgN
  • InChI=1/C51H64N12O12S2/c1-25(2)38-49(72)74-22-36(59-42(65)34-21-53-30-17-13-15-19-32(30)57-34)44(67)55-28(6)46(69)63(10)40-48(71)62(9)39(26(3)4)50(73)75-23-35(58-41(64)33-20-52-29-16-12-14-18-31(29)56-33)43(66)54-27(5)45(68)60(7)37(47(70)61(38)8)24-77-51(40)76-11/h12-21,25-28,35-40,51H,22-24H2,1-11H3,(H,54,66)(H,55,67)(H,58,64)(H,59,65)/t27-,28-,35+,36+,37-,38-,39-,40+,51?/m0/s1
    Key: AUJXLBOHYWTPFV-VITLIGDRBO
  • C[C@H]1C(=O)N([C@H]2CSC([C@@H](C(=O)N([C@H](C(=O)OC[C@H](C(=O)N1)NC(=O)c3cnc4ccccc4n3)C(C)C)C)N(C(=O)[C@@H](NC(=O)[C@@H](COC(=O)[C@@H](N(C2=O)C)C(C)C)NC(=O)c5cnc6ccccc6n5)C)C)SC)C
Properties
C51H64N12O12S2
Molar mass 1101.26 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Proposed enzymatic reaction mechanism for the biotransformation of 1 to 2. Thioacetal bridge formation.png
Proposed enzymatic reaction mechanism for the biotransformation of 1 to 2.

Echinomycin is a peptide antibiotic. It is a dimer of two peptides creating a cyclic structure. It contains a bicyclic aromatic chromophore that is attached to the dimerized cyclic peptide core and a thioacetal bridge. It intercalates into DNA at two specific sites, thereby blocking the binding of hypoxia inducible factor 1 alpha (HIF1alpha). [1]

Biosynthesis

Echinomycin is a bis-intercalator peptide and is biosynthesized by a unique nonribosomal peptide synthetase (NRPS). [2] [3] Echinomycin is isolated from various bacteria such as Streptomyceslasalienis. It belongs to a family of quinoxaline antibiotics. There is great interest in this group of compounds because they have very potent antibacterial, anticancer, and antiviral activities. [4]

The biosynthesis of echinomycin starts with molecule QC. L-tryptophan is the precursor for QC and its biosynthesis parallels the first stage of nikkomycin biosynthesis.[ citation needed ]

After QC is biosynthesized, the adenylation domain-containing Ecm1 activates and transfers QC to FabC using the fatty acid biosynthesis acyl carrier protein (ACP). The first module, Ecm6 accepts the QC-SFabC as the starter unit. Emc7 contains a terminal thioesterase domain which allows the peptide to dimerize and then release. This cyclized product then goes on to Ecm17, an oxidoreductase, creating a disulfide bond. The last step in this biosynthesis transforms the disulfide bond into a thioacetal bridge. This transformation takes place within Ecm18, a S-adenosyl-L-methionine (SAM)-dependent methyltransferase. [4] The mechanism is proposed to proceed through two steps. Initially Emc18 transfers the activated methyl group from SAM to one of the sulfur atoms in the disulfide bond. Secondly deprotonation of the alpha proton to the tertiary sulfonium cation promotes the rearrangement for the formation of the thioacetal bond.[ citation needed ]

Proposed biosyntheis of the chormophore in echinomycin and other quinomycin-type antibiotics. QXC biosynthesis.png
Proposed biosyntheis of the chormophore in echinomycin and other quinomycin-type antibiotics.

Structure of Echinomycin Biosynthesis.gif

Related Research Articles

Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides which have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.

<span class="mw-page-title-main">Peptide bond</span> Covalent chemical bond between amino acids in a peptide or protein chain

In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 of one alpha-amino acid and N2 of another, along a peptide or protein chain.

<span class="mw-page-title-main">Oligopeptide</span>

An oligopeptide, often just called peptide, consists of two to twenty amino acids and can include dipeptides, tripeptides, tetrapeptides, and pentapeptides. Some of the major classes of naturally occurring oligopeptides include aeruginosins, cyanopeptolins, microcystins, microviridins, microginins, anabaenopeptins, and cyclamides. Microcystins are best studied, because of their potential toxicity impact in drinking water. A review of some oligopeptides found that the largest class are the cyanopeptolins (40.1%), followed by microcystins (13.4%).

<span class="mw-page-title-main">Alamethicin</span> Chemical compound

Alamethicin is a channel-forming peptide antibiotic, produced by the fungus Trichoderma viride. It belongs to peptaibol peptides which contain the non-proteinogenic amino acid residue Aib. This residue strongly induces formation of alpha-helical structure. The peptide sequence is

<span class="mw-page-title-main">Polymyxin</span> Group of antibiotics

Polymyxins are antibiotics. Polymyxins B and E are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

<span class="mw-page-title-main">Chemical biology</span> Scientific discipline

Chemical biology is a scientific discipline between the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. Although often confused with biochemistry, which studies the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology remains distinct by focusing on the application of chemical tools to address biological questions.

<span class="mw-page-title-main">Viomycin</span> Chemical compound

Viomycin is a member of the tuberactinomycin family, a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus.

<span class="mw-page-title-main">Gramicidin S</span> Chemical compound

Gramicidin S or Gramicidin Soviet is an antibiotic that is effective against some gram-positive and gram-negative bacteria as well as some fungi.

<span class="mw-page-title-main">TetR</span>

Tet Repressor proteins are proteins playing an important role in conferring antibiotic resistance to large categories of bacterial species.

<span class="mw-page-title-main">Tyrocidine</span> Chemical compound

Tyrocidine is a mixture of cyclic decapeptides produced by the bacteria Bacillus brevis found in soil. It can be composed of 4 different amino acid sequences, giving tyrocidine A–D. Tyrocidine is the major constituent of tyrothricin, which also contains gramicidin. Tyrocidine was the first commercially available antibiotic, but has been found to be toxic toward human blood and reproductive cells. The function of tyrocidine within its host B. brevis is thought to be regulation of sporulation.

<span class="mw-page-title-main">Cyclic peptide</span> Peptide chains which contain a circular sequence of bonds

Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chain, for example in bacitracin; the carboxyl end and a side chain, for example in colistin; or two side chains or more complicated arrangements, for example in alpha-amanitin. Many cyclic peptides have been discovered in nature and many others have been synthesized in the laboratory. Their length ranges from just two amino acid residues to hundreds. In nature they are frequently antimicrobial or toxic; in medicine they have various applications, for example as antibiotics and immunosuppressive agents. Thin-Layer Chromatography (TLC) is a convenient method to detect cyclic peptides in crude extract from bio-mass.

<span class="mw-page-title-main">Gliotoxin</span> Chemical compound

Gliotoxin is a sulfur-containing mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics. Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).

<span class="mw-page-title-main">Procollagen-proline dioxygenase</span> Enzyme

Procollagen-proline dioxygenase, commonly known as prolyl hydroxylase, is a member of the class of enzymes known as alpha-ketoglutarate-dependent hydroxylases. These enzymes catalyze the incorporation of oxygen into organic substrates through a mechanism that requires alpha-Ketoglutaric acid, Fe2+, and ascorbate. This particular enzyme catalyzes the formation of (2S, 4R)-4-hydroxyproline, a compound that represents the most prevalent post-translational modification in the human proteome.

<span class="mw-page-title-main">Cystine knot</span> Protein structural motif

A cystine knot is a protein structural motif containing three disulfide bridges. The sections of polypeptide that occur between two of them form a loop through which a third disulfide bond passes, forming a rotaxane substructure. The cystine knot motif stabilizes protein structure and is conserved in proteins across various species. There are three types of cystine knot, which differ in the topology of the disulfide bonds:

<span class="mw-page-title-main">Inhibitor cystine knot</span>

An inhibitor cystine knot is a protein structural motif containing three disulfide bridges. Knottins are one of three folds in the cystine knot motif; the other closely related knots are the growth factor cystine knot (GFCK) and the cyclic cystine knot. Types include a) cyclic mobius, b) cyclic bracelet, c) acyclic inhibitor knottins. Cystine knot motifs are found frequently in nature in a plethora of plants, animals, and fungi and serve diverse functions from appetite suppression to anti-fungal activity.

Ribosomally synthesized and post-translationally modified peptides (RiPPs), also known as ribosomal natural products, are a diverse class of natural products of ribosomal origin. Consisting of more than 20 sub-classes, RiPPs are produced by a variety of organisms, including prokaryotes, eukaryotes, and archaea, and they possess a wide range of biological functions.

The cGAS–STING pathway is a component of the innate immune system that functions to detect the presence of cytosolic DNA and, in response, trigger expression of inflammatory genes that can lead to senescence or to the activation of defense mechanisms. DNA is normally found in the nucleus of the cell. Localization of DNA to the cytosol is associated with tumorigenesis, viral infection, and invasion by some intracellular bacteria. The cGAS – STING pathway acts to detect cytosolic DNA and induce an immune response.

<span class="mw-page-title-main">Tilivalline</span> Chemical compound

Tilivalline is a nonribosomal enterotoxin and was the first naturally occurring pyrrolobenzodiazepine (PBD) to be associated with disease in the human intestine. Previous work has shown that PBD tilivalline produced by Klebsiella oxytoca was linked to the pathogenesis of colitis in animal model of antibiotic-associated hemorrhagic colitis (AAHC). Since the enteric bacterium K. oxytoca is part of the intestinal microbiota and tilivalline causes the pathogenesis of colitis, it is important to understand the biosynthesis and regulation of tilivalline activity.

References

  1. Kong D, Park EJ, Stephen A, Mellilo G (1 October 2005). "Echinomycin, a Small-Molecule Inhibitor of Hypoxia-Inducible Factor-1 DNA-Binding Activity". Cancer Research. 65 (19): 9047–9055. doi:10.1158/0008-5472.CAN-05-1235. hdl: 2158/432131 . PMID   16204079 . Retrieved 15 June 2022.
  2. Watanabe K, Oguri, H, Oikawa, H (April 2009). "Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway". Current Opinion in Chemical Biology. 13 (2): 189–96. doi:10.1016/j.cbpa.2009.02.012. PMID   19278894.
  3. Sato M, Nakazawa T, Tsunematsu Y, Hotta K, Watanabe K (2013). "Echinomycin biosynthesis". Current Opinion in Chemical Biology. 17 (4): 537–45. doi:10.1016/j.cbpa.2013.06.022. PMID   23856054.
  4. 1 2 Watanabe K, et al. (August 2006). "Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli". Nature Chemical Biology. 2 (8): 423–8. doi:10.1038/nchembio803. PMID   16799553. S2CID   40607322.