Edge tessellation

Last updated

In geometry, an edge tessellation is a partition of the plane into non-overlapping polygons (a tessellation) with the property that the reflection of any of these polygons across any of its edges is another polygon in the tessellation. All of the resulting polygons must be convex, and congruent to each other. There are eight possible edge tessellations in Euclidean geometry, [1] but others exist in non-Euclidean geometry.

The eight Euclidean edge tessellations are: [1]

Stacked bond.png Tiling Regular 3-6 Triangular.svg Tiling Dual Semiregular V4-8-8 Tetrakis Square.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg
Tiling with rectangles Triangular tiling Tetrakis square tiling Kisrhombille tiling
Tiling Regular 6-3 Hexagonal.svg Tiling Dual Semiregular V3-6-3-6 Quasiregular Rhombic.svg Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg
Hexagonal tiling Rhombille tiling Deltoidal trihexagonal tiling Triakis triangular tiling

In the first four of these, the tiles have no obtuse angles, and the degrees of the vertices are all even. Because the degrees are even, the sides of the tiles form lines through the tiling, so each of these four tessellations can alternatively be viewed as an arrangement of lines. In the second four, each tile has at least one obtuse angle at which the degree is three, and the sides of tiles that meet at that angle do not extend to lines in the same way. [1]

These tessellations were considered by 19th-century inventor David Brewster in the design of kaleidoscopes. A kaleidoscope whose mirrors are arranged in the shape of one of these tiles will produce the appearance of an edge tessellation. However, in the tessellations generated by kaleidoscopes, it does not work to have vertices of odd degree, because when the image within a single tile is asymmetric there would be no way to reflect that image consistently to all the copies of the tile around an odd-degree vertex. Therefore, Brewster considered only the edge tessellations with no obtuse angles, omitting the four that have obtuse angles and degree-three vertices. [2]

See also

Citations

  1. 1 2 3 Kirby, Matthew; Umble, Ronald (2011), "Edge tessellations and stamp folding puzzles", Mathematics Magazine, 84 (4): 283–289, arXiv: 0908.3257 , doi:10.4169/math.mag.84.4.283, MR   2843659 .
  2. Brewster, David (1819), "Chapter XI: On the construction and use of polycentral kaleidoscopes", A Treatise on the Kaleidoscope, Edinburgh: Archibald Constable & Co., pp. 92–100

Related Research Articles

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Star polygon</span> Regular non-convex polygon

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four sides of equal length and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Schwarz triangle</span> Spherical triangle that can be used to tile a sphere

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Snub trihexagonal tiling</span>

In geometry, the snub hexagonal tiling is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

<span class="mw-page-title-main">Digon</span> Polygon with 2 sides and 2 vertices

In geometry, a digon, or a 2-gon, is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. It may also be viewed as a representation of a graph with two vertices, see "Generalized polygon".

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<i>Circle Limit III</i> 1959 woodcut by M. C. Escher

Circle Limit III is a woodcut made in 1959 by Dutch artist M. C. Escher, in which "strings of fish shoot up like rockets from infinitely far away" and then "fall back again whence they came".

<span class="mw-page-title-main">Planigon</span> Convex polygon which can tile the plane by itself

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle,, defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles. Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror. Up to 3 face types exist centered on the fundamental triangle corners. Right triangle domains can have as few as 1 face type, making regular forms, while general triangles have at least 2 triangle types, leading at best to a quasiregular tiling.