Egan conjecture

Last updated

In geometry, the Egan conjecture gives a sufficient and necessary condition for the radii of two spheres and the distance of their centers, so that a simplex exists, which is completely contained inside the larger sphere and completely encloses the smaller sphere. The conjecture generalizes an equality discovered by William Chapple (and later independently by Leonard Euler), which is a special case of Poncelet's closure theorem, as well as the Grace–Danielsson inequality in one dimension higher.

Contents

The conjecture was proposed in 2014 by the Australian mathematician and science-fiction author Greg Egan. The "sufficient" part was proved in 2018, and the "necessary" part was proved in 2023.

Basics

For an arbitrary triangle (-simplex), the radius of its inscribed circle, the radius of its circumcircle and the distance of their centers are related through Euler's theorem in geometry:

,

which was published by William Chapple in 1746 [1] and by Leonard Euler in 1765. [2]

For two spheres (-spheres) with respective radii and , fulfilling , there exists a (non-regular) tetrahedron (-simplex), which is completely contained inside the larger sphere and completely encloses the smaller sphere, if and only if the distance of their centers fulfills the Grace–Danielsson inequality:

.

This result was independently proven by John Hilton Grace in 1917 and G. Danielsson in 1949. [3] [4] A connection of the inequality with quantum information theory was described by Anthony Milne. [5]

Conjecture

Consider -dimensional euclidean space for . For two -spheres with respective radii and , fulfilling , there exists a -simplex, which is completely contained inside the larger sphere and completely encloses the smaller sphere, if and only if the distance of their centers fulfills:

.

The conjecture was proposed by Greg Egan in 2014. [6]

For the case , where the inequality reduces to , the conjecture is true as well, but trivial. A -sphere is just composed of two points and a -simplex is just a closed interval. The desired -simplex of two given -spheres can simply be chosen as the closed interval between the two points of the larger sphere, which contains the smaller sphere if and only if it contains both of its points with respective distance and from the center of the larger sphere, hence if and only if the above inequality is satisfied.

Status

Greg Egan showed that the condition is sufficient under a blog post by John Baez in 2014. They were lost due to a rearrangement of the website, but the central parts were copied into the original blog post. Further comments by Greg Egan on 16 April 2018 concern the search for a generalized conjecture involving ellipsoids. [6] Sergei Drozdov published a paper on ArXiv showing that the condition is also necessary on 16 October 2023. [7]

Related Research Articles

Greg Egan is an Australian science fiction writer and mathematician, best known for his works of hard science fiction. Egan has won multiple awards including the John W. Campbell Memorial Award, the Hugo Award, and the Locus Award.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

<span class="mw-page-title-main">Triangle inequality</span> Property of geometry, also used to generalize the notion of "distance" in metric spaces

In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If x, y, and z are the lengths of the sides of the triangle, with no side being greater than z, then the triangle inequality states that

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Theorem in differential geometry

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Centroid</span> Mean position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within general topology.

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also Introduction to systolic geometry.

<span class="mw-page-title-main">Euler's theorem in geometry</span> On distance between centers of a triangle

In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by

<span class="mw-page-title-main">Midsphere</span> Sphere tangent to every edge of a polyhedron

In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedra, including the regular, quasiregular and semiregular polyhedra and their duals all have midspheres. The radius of the midsphere is called the midradius. A polyhedron that has a midsphere is said to be midscribed about this sphere.

In geometry, Jung's theorem is an inequality between the diameter of a set of points in any Euclidean space and the radius of the minimum enclosing ball of that set. It is named after Heinrich Jung, who first studied this inequality in 1901. Algorithms also exist to solve the smallest-circle problem explicitly.

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Acute and obtuse triangles</span> Triangles without a right angle

An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle. Acute and obtuse triangles are the two different types of oblique triangles — triangles that are not right triangles because they do not have a 90° angle.

In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes.

William Chapple (1718–1781) was an English surveyor and mathematician. His mathematical discoveries were mostly in plane geometry and include:

In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth.

References

  1. Chapple, William, Miscellanea Curiosa Mathematica (ed.), An essay on the properties of triangles inscribed in and circumscribed about two given circles (1746), vol. 4, pp. 117–124, formula on the bottom of page 123
  2. Leversha, Gerry; Smith, G. C. (November 2007), The Mathematical Gazette (ed.), Euler and triangle geometry, vol. 91, pp. 436–452{{citation}}: CS1 maint: multiple names: authors list (link)
  3. Grace, J.H. (1918), Proc. London Math. (ed.), Tetrahedra in relation to spheres and quadrics, vol. Soc.17, pp. 259–271
  4. Danielsson, G. (1952), Johan Grundt Tanums Forlag (ed.), Proof of the inequality d2≤(R+r)(R−3r) for the distance between the centres of the circumscribed and inscribed spheres of a tetrahedron, pp. 101–105
  5. Anthony Milne (2014-04-02). "The Euler and Grace-Danielsson inequalities for nested triangles and tetrahedra: a derivation and generalisation using quantum information theory" . Retrieved 2023-11-22.
  6. 1 2 John Baez (2014-07-01). "Grace–Danielsson Inequality" . Retrieved 2023-11-22.
  7. Sergei Drozdov. "Egan conjecture holds" . Retrieved 2023-11-22.