Einstein-aether theory

Last updated

In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether. The aether in this theory is "a Lorentz-violating vector field" [1] unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity equation. [2]

Contents

Relation to other theories of gravity

An Einstein-aether theory is an alternative theory of gravity that adds a vector field to the theory of general relativity. There are also scalar field modifications, including Brans–Dicke theory, all included with Horndeski's theory. Going the other direction, there are theories that add tensor fields, under the name Bimetric gravity or both scalar and vector fields can be added, as in Tensor–vector–scalar gravity. [3] :30

History

The name "Einstein-aether theory" was coined in 2004 by T. Jacobson and D. Mattingly. [4] This type of theory originated in the 1970s with the work of C.M.Will and K. Nordtvedt Jr. on gravitationally coupled vector field theories. [3] :42

In the 1980's Maurizio Gasperini added a scalar field, which intuitively corresponded to a universal notion of time, to the metric of general relativity. [5] Such a theory will have a preferred reference frame, that in which the universal time is the actual time.

In 2000, Ted Jacobson and David Mattingly developed a model that allows the consequences of preferred frames to be studied. [6] Their theory contains less information than that of Gasperini, instead of a scalar field giving a universal time it contains only a unit vector field which gives the direction of time. Thus observers who follow the aether at different points will not necessarily age at the same rate in the Jacobson–Mattingly theory. In 2008 Ted Jacobson presented a status report on Einstein-aether theory. [7]

Breaking Lorentz symmetry

The existence of a preferred, dynamical time vector breaks the Lorentz symmetry of the theory, more precisely it breaks the invariance under boosts. This symmetry breaking may lead to a Higgs mechanism for the graviton which would alter long distance physics, perhaps yielding an explanation for recent supernova data which would otherwise be explained by a cosmological constant. The effect of breaking Lorentz invariance on quantum field theory has a long history leading back at least to the work of Markus Fierz and Wolfgang Pauli in 1939. Recently it has regained popularity with, for example, the paper Effective Field Theory for Massive Gravitons and Gravity in Theory Space by Nima Arkani-Hamed, Howard Georgi and Matthew Schwartz. [8] Einstein-aether theories provide a concrete example of a theory with broken Lorentz invariance and so have proven to be a natural setting for such investigations.

Action

The action of the Einstein-aether theory is generally taken to consist of the sum of the Einstein–Hilbert action with a Lagrange multiplier λ that ensures that the time vector is a unit vector and also with all of the covariant terms involving the time vector u but having at most two derivatives.

In particular it is assumed that the action may be written as the integral of a local Lagrangian density

where GN is Newton's constant and g is a metric with Minkowski signature. The Lagrangian density is

Here R is the Ricci scalar, is the covariant derivative and the tensor K is defined by

Here the ci are dimensionless adjustable parameters of the theory.

Solutions

Stars

Several spherically symmetric solutions to ae-theory have been found. Most recently Christopher Eling and Ted Jacobson have found solutions resembling stars [9] and solutions resembling black holes. [10]

In particular, they demonstrated that there are no spherically symmetric solutions in which stars are constructed entirely from the aether. Solutions without additional matter always have either naked singularities or else two asymptotic regions of spacetime, resembling a wormhole but with no horizon. They have argued that static stars must have static aether solutions, which means that the aether points in the direction of a timelike killing vector.

Black holes and potential problems

However this is difficult to reconcile with static black holes, as at the event horizon there are no timelike Killing vectors available and so the black hole solutions cannot have static aethers. Thus when a star collapses to form a black hole, somehow the aether must eventually become static even very far away from the collapse.

In addition the stress tensor does not obviously satisfy the Raychaudhuri equation, one needs to make recourse to the equations of motion. This is in contrast with theories with no aether, where this property is independent of the equations of motion.

Experimental constraints

In a 2005 paper, [11] Nima Arkani-Hamed, Hsin-Chia Cheng, Markus Luty and Jesse Thaler have examined experimental consequences of the breaking of boost symmetries inherent in aether theories. They have found that the resulting Goldstone boson leads to, among other things, a new kind of Cherenkov radiation.

In addition they have argued that spin sources will interact via a new inverse square law force with a very unusual angular dependence. They suggest that the discovery of such a force would be very strong evidence for an aether theory, although not necessarily that of Jacobson, et al.

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

<span class="mw-page-title-main">Loop quantum gravity</span> Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale on the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

<span class="mw-page-title-main">Scalar field</span> Assignment of numbers to points in space

In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.

Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.

In physics, the Brans–Dicke theory of gravitation is a competitor to Einstein's general theory of relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant is not presumed to be constant but instead is replaced by a scalar field which can vary from place to place and with time.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

Scalar theories of gravitation are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation.

Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

In classical theories of gravitation, the changes in a gravitational field propagate. A change in the distribution of energy and momentum of matter results in subsequent alteration, at a distance, of the gravitational field which it produces. In the relativistic sense, the "speed of gravity" refers to the speed of a gravitational wave, which, as predicted by general relativity and confirmed by observation of the GW170817 neutron star merger, is equal to the speed of light (c).

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.

<span class="mw-page-title-main">Superfluid vacuum theory</span> Theory of fundamental physics

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is considered as a superfluid or as a Bose–Einstein condensate (BEC).

Complex spacetime is a mathematical framework that combines the concepts of complex numbers and spacetime in physics. In this framework, the usual real-valued coordinates of spacetime are replaced with complex-valued coordinates. This allows for the inclusion of imaginary components in the description of spacetime, which can have interesting implications in certain areas of physics, such as quantum field theory and string theory.

References

  1. Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv: 1106.2476 . Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001.
  2. Eling, Christopher; Jacobson, Ted (2004-03-08). "Static post-Newtonian equivalence of general relativity and gravity with a dynamical preferred frame". Physical Review D. 69 (6): 064005. arXiv: gr-qc/0310044 . Bibcode:2004PhRvD..69f4005E. doi:10.1103/PhysRevD.69.064005. ISSN   1550-7998. S2CID   15888510.
  3. 1 2 Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv: 1106.2476 . Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001.
  4. Jacobson, T.; Mattingly, D. (2004-07-19). "Einstein-aether waves". Physical Review D. 70 (2): 024003. arXiv: gr-qc/0402005 . Bibcode:2004PhRvD..70b4003J. doi:10.1103/PhysRevD.70.024003. ISSN   1550-7998. S2CID   119355560. We refer to the system of the metric coupled to the aether as "Einstein-aether theory"
  5. Gasperini, M. (1987). "Singularity Prevention and Broken Lorentz Symmetry". Classical and Quantum Gravity. 4 (2): 485–494. Bibcode:1987CQGra...4..485G. doi:10.1088/0264-9381/4/2/026. S2CID   250814796.
  6. Jacobson, Ted; Mattingly, David (2001-06-26). "Gravity with a dynamical preferred frame". Physical Review D. 64 (2): 024028. arXiv: gr-qc/0007031 . Bibcode:2001PhRvD..64b4028J. doi:10.1103/PhysRevD.64.024028. ISSN   0556-2821. S2CID   119372246.
  7. Jacobson, Ted (2008-01-10). "Einstein-aether gravity: A status report". arXiv: 0801.1547v2 [gr-qc].
  8. Arkani-Hamed, Nima; Georgi, Howard; Schwartz, Matthew D. (2003). "Effective Field Theory for Massive Gravitons and Gravity in Theory Space". Annals of Physics. 305 (2): 96–118. arXiv: hep-th/0210184 . Bibcode:2003AnPhy.305...96A. doi:10.1016/S0003-4916(03)00068-X. S2CID   1367086.
  9. Jacobson, Ted; Mattingly, David (2006). "Spherical Solutions to Einstein-aether Theory: Static Aether and Stars". Classical and Quantum Gravity. 23 (18): 5625–5642. arXiv: gr-qc/0603058 . Bibcode:2006CQGra..23.5625E. doi:10.1088/0264-9381/23/18/008. S2CID   120259601.
  10. Eling, Christopher; Jacobson, Ted (2006). "Black Holes in Einstein-aether Theory". Classical and Quantum Gravity. 23 (18): 5643–5660. arXiv: gr-qc/0604088 . Bibcode:2006CQGra..23.5643E. doi:10.1088/0264-9381/23/18/009. S2CID   119488152.
  11. Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus; Thaler, Jesse (2005). "Universal dynamics of spontaneous Lorentz violation and a new spin-dependent inverse-square law force". Journal of High Energy Physics. 2005 (7): 029. arXiv: hep-ph/0407034 . Bibcode:2005JHEP...07..029A. doi:10.1088/1126-6708/2005/07/029.