Electrical wiring interconnection system

Last updated

An electrical wiring interconnect system (EWIS) is the wiring system and components (such as bundle clamps, wire splices, etc.) for a complex system. The term originated in the aviation industry but was originally designated as Electrical Interconnection Systems (EIS). [1] The change from EIS to EWIS was done to emphasize the focus on the actual wires and wiring of the systems throughout aircraft. [2]

Contents

Background

Prior to the aviation accidents of TWA Flight 800 and SwissAir 111, the wiring on aircraft was a minor concern. In response to these accidents, the Aging Transport Systems Rulemaking Advisory Committee (ATSRAC) was chartered to gather industry leaders examine the current state of aging aircraft systems; one of the main areas examined included EWIS. [3] The committee included a number of key organizations and businesses including ATA, NASA, Northwest Airlines, Boeing, Airbus, FAA, and Electromechanical Design Company. Many of the results from the ATSRAC committee shaped the FAA's regulatory reaction to the handling and certification of EWIS. The following is an excerpt from the FAA’s regulations released November 8, 2007 governing aspects of EWIS on aircraft as to the reason for the increased concerns regarding EWIS:

“Safety concerns about wiring systems in airplanes were brought to the forefront of public attention by a midair explosion in 1996 involving a 747 airplane. Ignition of flammable vapors in the fuel tank was the probable cause of that fatal accident, and the most likely source was a wiring failure that allowed a spark to enter the fuel tank. All 230 people aboard the airplane were killed. Two years later, an MD–11 (Swissair Flight 111) airplane crashed into the Atlantic Ocean, killing all 229 people aboard. Although an exact cause could not be determined, the presence of re-solidified copper on a portion of a wire of the in-flight entertainment system cable indicated that wire arcing had occurred in the area where the fire most likely originated.

Investigations of those accidents and later examinations of other airplanes showed a collection of common problems. Deteriorated wiring, corrosion, improper wire installation and repairs, and contamination of wire bundles with metal shavings, dust, and fluids (which would provide fuel for fire) were common conditions in representative examples of the ‘‘aging fleet of transport airplanes.’’ " [4]

The FAA funded a number of studies involving the analysis of the current state of wiring on aircraft, the deterioration processes of wiring systems, [5] tools to detect wire failure, and ways of quantifying and mitigating the damage from an electrical arc. [6]

In 2009 the European Aviation Safety Agency issued 3 "Acceptable Means of Compliance", AMC 20-21, [7] AMC 20-22 [8] and AMC 20-23 [9] dealing in turn with the maintenance procedures, the training and the documentation that had to be introduced by Maintenance and Repair Organisations to reduce the probability of serious incidents or accidents caused by wiring failure.

AMC 20-22 is almost exactly similar to the US FAA Airworthiness Circular 120-94. [10]

EWIS Aircraft Electrical Systems Reliability

The term electrical system refers to those parts on the aircraft that generate, distribute and use electrical energy, including their supports and attachments. The satisfactory performance of an aircraft is dependent upon the continued reliability of the electrical system. Reliability of the electrical system is proportional to the quality of maintenance received, the correct independent part selection and the supervised installation of each electrical component in the aircraft as explained in the FAA advisory circular 43.13-1B - Acceptable Methods, Techniques, and Practices Chapter 11. [11]

Electrical component selection is a critical step to ensure the correct operation in any aircraft electrical system. Components need to be selected for their electrical specifications and properties as well as for the extreme conditions these components could be exposed. Inspection and testing of every single component plays a major role in the EWIS regulations to guarantee the safety and reliability of the system.

Correct engineering design, planning and coordination with the manufacturers of each electrical component will secure the proper installation of each component. The correct installation of the components in the aircraft and the manufacturing procedures are requirements of the EWIS regulations.

Once the aircraft has an airworthiness certificate and has reached an entry into service status, the maintenance of the aircraft’s electrical systems will play a key role to guarantee the reliability of the systems and the safety of flight.

See also

Related Research Articles

<span class="mw-page-title-main">Fly-by-wire</span> Electronic flight control system

Fly-by-wire (FBW) is a system that replaces the conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires, and flight control computers determine how to move the actuators at each control surface to provide the ordered response. It can use mechanical flight control backup systems or use fully fly-by-wire controls.

The Federal Aviation Regulations (FARs) are rules prescribed by the Federal Aviation Administration (FAA) governing all aviation activities in the United States. The FARs comprise Title 14 of the Code of Federal Regulations (CFR). A wide variety of activities are regulated, such as aircraft design and maintenance, typical airline flights, pilot training activities, hot-air ballooning, lighter-than-air aircraft, man-made structure heights, obstruction lighting and marking, model rocket launches, commercial space operations, model aircraft operations, Unmanned Aircraft Systems (UAS) and kite flying. The rules are designed to promote safe aviation, protecting pilots, flight attendants, passengers and the general public from unnecessary risk.

<span class="mw-page-title-main">Electrician</span> Tradesperson specializing in electrical wiring

An electrician is a tradesperson specializing in electrical wiring of buildings, transmission lines, stationary machines, and related equipment. Electricians may be employed in the installation of new electrical components or the maintenance and repair of existing electrical infrastructure. Electricians may also specialize in wiring ships, airplanes, and other mobile platforms, as well as data and cable lines.

<span class="mw-page-title-main">American Airlines Flight 191</span> May 1979 plane crash in Chicago, US

American Airlines Flight 191 was a regularly scheduled domestic passenger flight in the United States operated by American Airlines from Chicago O'Hare International Airport to Los Angeles International Airport. On the afternoon of May 25, 1979, the McDonnell Douglas DC-10-10 operating this flight was taking off from runway 32R when its left engine detached, causing loss of control, and it crashed less than one mile (1.6 km) from the end of the runway. All 258 passengers and 13 crew on board were killed, along with two people on the ground. With 273 fatalities, it is the deadliest aviation accident to have occurred in the United States.

<span class="mw-page-title-main">Ram air turbine</span>

A ram air turbine (RAT) is a small wind turbine that is connected to a hydraulic pump, or electrical generator, installed in an aircraft and used as a power source. The RAT generates power from the airstream by ram pressure due to the speed of the aircraft. It may be called an air driven generator (ADG) on some aircraft.

<span class="mw-page-title-main">Boeing 787 Dreamliner</span> Boeing wide-body jet airliner introduced in 2011

The Boeing 787 Dreamliner is an American wide-body jet airliner developed and manufactured by Boeing Commercial Airplanes. After dropping its unconventional Sonic Cruiser project, Boeing announced the conventional 7E7 on January 29, 2003, which focused largely on efficiency. The program was launched on April 26, 2004, with an order for 50 aircraft from All Nippon Airways (ANA), targeting a 2008 introduction. On July 8, 2007, a prototype 787 was rolled out without major operating systems, and then the aircraft experienced multiple delays until its maiden flight on December 15, 2009. Type certification was received in August 2011 and the first 787-8 was delivered in September 2011 before entering commercial service on October 26, 2011, with ANA.

<span class="mw-page-title-main">Alaska Airlines Flight 261</span> Aviation accident over the Pacific Ocean in 2000

Alaska Airlines Flight 261 was an Alaska Airlines flight of a McDonnell Douglas MD-83 plane that crashed into the Pacific Ocean on January 31, 2000, roughly 2.7 miles north of Anacapa Island, California, following a catastrophic loss of pitch control, killing all 88 on board: two pilots, three cabin crew members, and 83 passengers. The flight was a scheduled international passenger flight from Licenciado Gustavo Díaz Ordaz International Airport in Puerto Vallarta, Jalisco, Mexico, to Seattle–Tacoma International Airport in Seattle, Washington, United States, with an intermediate stop at San Francisco International Airport in San Francisco, California.

An inerting system decreases the probability of combustion of flammable materials stored in a confined space. The most common such system is a fuel tank containing a combustible liquid, such as gasoline, diesel fuel, aviation fuel, jet fuel, or rocket propellant. After being fully filled, and during use, there is a space above the fuel, called the ullage, that contains evaporated fuel mixed with air, which contains the oxygen necessary for combustion. Under the right conditions this mixture can ignite. An inerting system replaces the air with a gas that cannot support combustion, such as nitrogen.

<span class="mw-page-title-main">Ground proximity warning system</span> Alert system meant to prevent pilots from flying or taxiing into obstacles

A ground proximity warning system (GPWS) is a system designed to alert pilots if their aircraft is in immediate danger of flying into the ground or an obstacle. The United States Federal Aviation Administration (FAA) defines GPWS as a type of terrain awareness warning system (TAWS). More advanced systems, introduced in 1996, are known as enhanced ground proximity warning systems (EGPWS), a modern type of TAWS.

<span class="mw-page-title-main">Aviation safety</span> State in which risks associated with aviation are at an acceptable level

Aviation safety is the study and practice of managing risks in aviation. This includes preventing aviation accidents and incidents through research, educating air travel personnel, passengers and the general public, as well as the design of aircraft and aviation infrastructure. The aviation industry is subject to significant regulation and oversight.

An Airworthiness Directive is a notification to owners and operators of certified aircraft that a known safety deficiency with a particular model of aircraft, engine, avionics or other system exists and must be corrected.

<span class="mw-page-title-main">ARP4754</span>

ARP4754, Aerospace Recommended Practice (ARP) ARP4754A, is a guideline from SAE International, dealing with the development processes which support certification of Aircraft systems, addressing "the complete aircraft development cycle, from systems requirements through systems verification." Revision A was released in December 2010. It was recognized by the FAA in AC 20-174 published November 2011. EUROCAE jointly issues the document as ED–79.

W. K. Kellogg Airport is a city-owned, public-use, joint civil-military airport located three nautical miles (6 km) west of the central business district of Battle Creek, a city in Calhoun County, Michigan, United States. The airport is accessible by road from Helmer Road, and is located near I-94. It is included in the Federal Aviation Administration (FAA) National Plan of Integrated Airport Systems for 2017–2021, in which it is categorized as a regional general aviation facility. It is also known as W. K. Kellogg Regional Airport.

Lectromec Design Co. is a Dulles, Virginia-based engineering firm specializing in aircraft electrical wiring interconnection system certification and testing. Lectromec’s ISO 17025 accredited laboratory is equipped to test and analyze electrical systems of various types for a variety of industries. Lectromec’s research focuses on understanding the electrical and physical properties of wiring insulation and the ill effects of damaged wiring.

<span class="mw-page-title-main">Terrain awareness and warning system</span> Technological equipment to prevent pilots from flying into obstacles

In aviation, a terrain awareness and warning system (TAWS) is generally an on-board system aimed at preventing unintentional impacts with the ground, termed "controlled flight into terrain" accidents, or CFIT. The specific systems currently in use are the ground proximity warning system (GPWS) and the enhanced ground proximity warning system (EGPWS). The U.S. Federal Aviation Administration (FAA) introduced the generic term TAWS to encompass all terrain-avoidance systems that meet the relevant FAA standards, which include GPWS, EGPWS and any future system that might replace them.

<span class="mw-page-title-main">Turbine engine failure</span> Turbine engine unexpectedly stops producing power due to a malfunction other than fuel exhaustion

A turbine engine failure occurs when a turbine engine unexpectedly stops producing power due to a malfunction other than fuel exhaustion. It often applies for aircraft, but other turbine engines can fail, like ground-based turbines used in power plants or combined diesel and gas vessels and vehicles.

<span class="mw-page-title-main">Klawock Airport</span> Airport

Klawock Airport is a state-owned public-use airport located two nautical miles (3.7 km) northeast of the central business district of Klawock, a city in the Prince of Wales-Hyder Census Area of the U.S. state of Alaska.

Zonal Safety Analysis (ZSA) is one of three analytical methods which, taken together, form a Common Cause Analysis (CCA) in aircraft safety engineering under SAE ARP4761. The other two methods are Particular Risks Analysis (PRA) and Common Mode Analysis (CMA). Aircraft system safety requires the independence of failure conditions for multiple systems. Independent failures, represented by an AND gate in a fault tree analysis, have a low probability of occurring in the same flight. Common causes result in the loss of independence, which dramatically increases probability of failure. CCA and ZSA are used to find and eliminate or mitigate common causes for multiple failures.

<span class="mw-page-title-main">2013 Boeing 787 Dreamliner grounding</span> Battery problems article of a Boeing 787 Dreamliner

In 2013, the second year of service for the Boeing 787 Dreamliner, a widebody jet airliner, several aircraft suffered from electrical system problems stemming from its lithium-ion batteries. Incidents included an electrical fire aboard an All Nippon Airways 787 and a similar fire found by maintenance workers on a parked Japan Airlines 787 at Boston's Logan International Airport. The United States Federal Aviation Administration (FAA) ordered a review into the design and manufacture of the Boeing 787 Dreamliner, followed by a full grounding of the entire Boeing 787 fleet, the first such grounding since that of the McDonnell Douglas DC-10 in 1979. The plane has had two major battery thermal runaway events in 52,000 flight hours, which was substantially less than the 10 million flight hours predicted by Boeing, neither of which were contained safely.

<span class="mw-page-title-main">AC 25.1309-1</span> American aviation regulatory document

AC 25.1309–1 is an FAA Advisory Circular (AC) that identifies acceptable means for showing compliance with the airworthiness requirements of § 25.1309 of the Federal Aviation Regulations. Revision A was releases in 1988. In 2002, work was done on Revision B, but it was not formally released; the result is the Rulemaking Advisory Committee-recommended revision B-Arsenal Draft (2002). The Arsenal Draft is "considered to exist as a relatively mature draft". The FAA and EASA have subsequently accepted proposals by type certificate applicants to use the Arsenal Draft on development programs.

References

  1. Linzey, W. G. (September 2006). Development of an Electrical Wire Interconnect System Risk Assessment Tool (PDF). faa.gov (Technical report). Federal Aviation Administration. DOT/FAA/AR-TN06/17. Archived (PDF) from the original on 2021-07-30. Retrieved 2022-10-18.
  2. V.L. Press; A. M. Bruning; D.C. Wood; R. L. Steinman (2002-09-16). "Advanced Risk Assessment Methods for Aircraft Electrical Wiring Interconnection Systems (EWIS)" (PDF). aerohabitat.org. Archived (PDF) from the original on 2021-07-30. Retrieved 2022-10-18.
  3. Hollinger, Kent V. "Aging Transport Systems Rulemaking Advisory Committee". caasd.org. Center for Advanced Aviation System Development. Archived from the original on 2022-05-17. Retrieved 2022-10-18.
  4. http://edocket.access.gpo.gov/2007/E7-21434.htm FAA Regulations on the certification and maintenance of aircraft wiring systems
  5. Lee, David (2002-05-25). "Wire Degradation Study Wire Degradation Study Phase I Results Phase I Results" (PDF). mitrecaasd.org. Center for Advanced Aviation System Development. Archived from the original (PDF) on 2021-07-30. Retrieved 2022-10-18.
  6. http://www.lectromec.org/Lectromec%20ADMT%202007Paper.pdf Archived 2007-10-20 at the Wayback Machine Description of FAA project to predict the potential damage caused by wire failure.
  7. "Archived copy" (PDF). Archived from the original (PDF) on 2012-04-01. Retrieved 2011-10-24.{{cite web}}: CS1 maint: archived copy as title (link)
  8. "Archived copy" (PDF). Archived from the original (PDF) on 2012-04-01. Retrieved 2011-10-24.{{cite web}}: CS1 maint: archived copy as title (link)
  9. "Archived copy" (PDF). Archived from the original (PDF) on 2011-10-27. Retrieved 2011-10-24.{{cite web}}: CS1 maint: archived copy as title (link)
  10. "AC 120-94 - Aircraft Electrical Wiring Interconnection Systems Training Program" (PDF). faa.gov. Federal Aviation Administration. 1997-11-20. Archived (PDF) from the original on 2022-01-23. Retrieved 2022-10-18.
  11. "Archived copy" (PDF). Archived from the original (PDF) on 2011-09-20. Retrieved 2013-05-11.{{cite web}}: CS1 maint: archived copy as title (link)