This article needs to be updated.(April 2021) |
Energy subsidies are government payments that keep the price of energy lower than market rate for consumers or higher than market rate for producers. These subsidies are part of the energy policy of the United States.
According to Congressional Budget Office testimony in 2016, an estimated $10.9 billion in tax preferences was directed toward renewable energy, $4.6 billion went to fossil fuels, and $2.7 billion went to energy efficiency or electricity transmission. [1]
According to a 2015 estimate by the Obama administration, the US oil industry benefited from subsidies of about $4.6 billion per year. [2] A 2017 study by researchers at Stockholm Environment Institute published in the journal Nature Energy estimated that "tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades." [3]
Energy subsidies are measures that keep prices for customers below market levels, or for suppliers above market levels, or reduce costs for customers and suppliers. [4] [5] Energy subsidies may be direct cash transfers to suppliers, customers, or related bodies, as well as indirect support mechanisms, such as tax exemptions and rebates, price controls, trade restrictions, and limits on market access.
During FY 2016–22, most US federal subsidies were for renewable energy producers (primarily biofuels, wind, and solar), low-income households, and energy-efficiency improvements. During FY 2016–22, nearly half (46%) of federal energy subsidies were associated with renewable energy, and 35% were associated with energy end uses. Federal support for renewable energy of all types more than doubled, from $7.4 billion in FY 2016 to $15.6 billion in FY 2022. [6]
The International Renewable Energy Agency tracked some $634 billion in energy-sector subsidies in 2020, and found that around 70% were fossil fuel subsidies. About 20% went to renewable power generation, 6% to biofuels and just over 3% to nuclear. [7]In the United States, biofuel subsidies have been justified on the following grounds: energy independence, reduction in greenhouse gas emissions, improvements in rural development related to biofuel plants and farm income support. Several economists from Iowa State University found "there is no evidence to disprove that the primary objective of biofuel policy is to support farm income." [8]
Consumers who purchase hybrid vehicles are eligible for a tax credit that depends upon the type of vehicle and the difference in fuel economy in comparison to vehicles of similar weights. These credits range from several hundred dollars to a few thousand dollars. [9] Homeowners can receive a tax credit up to $500 for energy-efficient products like insulation, windows, doors, as well as heating and cooling equipment. Homeowners who install solar electric systems can receive a 30% tax credit and homeowners who install small wind systems can receive a tax credit up to $4000. Geothermal heat pumps also qualify for tax credits up to $2,000. [10]
Recent energy policy incentives have provided, among other things, billions of dollars in tax reductions for nuclear power, fossil fuel production, clean coal technologies, renewable electricity production, and conservation and efficiency improvements. [11]
A 2017 study by the consulting firm Management Information Services, Inc. (MISI) [12] estimated the total historical federal subsidies for various energy sources over the years 1950–2016. The study found that oil, natural gas, and coal received $414 billion, $140 billion, and $112 billion (2015 dollars), respectively, or 65% of total energy subsidies over that period. Oil, natural gas, and coal benefited most from percentage depletion allowances and other tax-based subsidies, but oil also benefited heavily from regulatory subsidies such as exemptions from price controls and higher-than-average rates of return allowed on oil pipelines. The MISI report found that non-hydro renewable energy (primarily wind and solar) benefited from $158 billion in federal subsidies, or 16% of the total, largely in the form of tax policy and direct federal expenditures on research and development (R&D). Nuclear power benefited from $73 billion in federal subsidies, 8% of the total and less than half of the total applied to renewables, while hydro power received $105 billion in federal subsidies, 10% of the total. Notable was MISI's finding that between 2011 through 2016, renewable energy received more than three times as much help in federal incentives as oil, natural gas, coal, and nuclear combined, and 27 times as much as nuclear energy. [13]
In the United States, the federal government has paid US$145 billion for energy subsidies to support R&D for nuclear power ($85 billion) and fossil fuels ($60 billion) from 1950 to 2016. During this same timeframe, renewable energy technologies received a total of US $34 billion. Though in 2007 some suggested that a subsidy shift would help to level the playing field and support growing energy sectors, namely solar power, wind power, and bio-fuels., [14] by 2017 those sources combined had yet to provide 10% of U.S. electricity, and intermittency forced utilities to remain reliant on oil, natural gas, and coal to meet baseload demand. Many of the "subsidies" available to the oil and gas industries are general business opportunity credits, available to all US businesses (particularly, the foreign tax credit mentioned above). The value of industry-specific (oil, gas, and coal) subsidies in 2006 was estimated by the Texas State Comptroller to be $6.25 billion - about 60% of the amount calculated by the Environmental Law Institute. [15] The balance of federal subsidies, which the comptroller valued at $7.4 billion, came from shared credits and deductions, and oil defense (spending on the Strategic Petroleum Reserve, energy infrastructure security, etc.).
Critics allege that the most important subsidies to the nuclear industry have not involved cash payments, but rather the shifting of construction costs and operating risks from investors to taxpayers and ratepayers, burdening them with an array of risks including cost overruns, defaults to accidents, and nuclear waste management. Critics claim that this approach distorts market choices, which they believe would otherwise favor less risky energy investments. [16]
Many energy analysts, such as Clint Wilder, Ron Pernick and Lester Brown, have suggested that energy subsidies need to be shifted away from mature and established industries and towards high growth clean energy (excluding nuclear). They also suggest that such subsidies need to be reliable, long-term and consistent, to avoid the periodic difficulties that the wind industry has had in the United States. [14] [17]
From civilian nuclear power to hydro, wind, solar, and shale gas, the United States federal government has played a central role in the development of new energy industries. [18]
America's nuclear power industry, which currently supplies about 20% of the country's electricity, has its origins in the Manhattan Project to develop atomic weapons during World War II. From 1942 to 1945, the United States invested $20 billion (2003 dollars) into a massive nuclear research and deployment initiative. But the achievement of the first nuclear weapon test in 1945 marked the beginning, not the end, of federal involvement in nuclear technologies. President Dwight D. Eisenhower's “Atoms for Peace” address in 1953 and the 1954 Atomic Energy Act committed the United States to develop peaceful uses for nuclear technology, including commercial energy generation.
Commercial wind power was also enabled through government support. In the 1980s, the federal government pursued two different R&D efforts for wind turbine development. The first was a “big science” effort by NASA and the Department of Energy (DOE) to use U.S. expertise in high-technology research and products to develop new large-scale wind turbines for electricity generation, largely from scratch. [19] A second, more successful R&D effort, sponsored by the DOE, focused on component innovations for smaller turbines that used the operational experience of existing turbines to inform future research agendas. Joint research projects between the government and private firms produced a number of innovations that helped increase the efficiency of wind turbines, including twisted blades and special-purpose airfoils. Publicly funded R&D was coupled with efforts to build a domestic market for new turbines. At the federal level, this included tax credits and the passage of the Public Utilities Regulatory Policy Act (PURPA), which required that utilities purchase power from some small renewable energy generators at avoided cost. [19] Both federal and state support for wind turbine development helped drive costs down considerably, but policy incentives at both the federal and state level were discontinued at the end of the decade. [19] However, after a nearly five-year federal policy hiatus in the late 1980s, the U.S. government enacted new policies to support the industry in the early 1990s. The National Renewable Energy Laboratory (NREL) continued its support for wind turbine R&D, and also launched the Advanced Wind Turbine Program (AWTP). The goal of the AWTP was to reduce the cost of wind power to rates that would be competitive in the U.S. market. Policymakers also introduced new mechanisms to spur the demand of new wind turbines and boost the domestic market, including a 1.5 cents per kilowatt-hour tax credit (adjusted over time for inflation) included in the 1992 Energy Policy Act. Today the wind industry's main subsidy support comes from the federal production tax credit.
The development of commercial solar power was also dependent on government support. Solar PV technology was developed in the United States, when Daryl Chapin, Calvin Fuller, and Gerald Pearson at Bell Labs first demonstrated the silicon solar photovoltaic cell in 1954. [20] The first cells recorded efficiencies of four percent, far lower than the 25 percent efficiencies typical of some silicon crystalline cells today. With the cost out of reach for most applications, developers of the new technology had to look elsewhere for an early market. As it turned out, solar PV did make economic sense in one market segment: aerospace. The United States Army and Air Force viewed the technology as an ideal power source for a top-secret project on earth-orbiting satellites. The government contracted with Hoffman Electronics to provide solar cells for its new space exploration program. The first commercial satellite, the Vanguard I, launched in 1958, was equipped with both silicon solar cells and chemical batteries. [20] By 1965, NASA was using almost a million solar PV cells. Strong government demand and early research support for solar cells paid off in the form of dramatic declines in the cost of the technology and improvements in its performance. From 1956 to 1973, the price of PV cells declined from $300 to $20 per watt. [20] Beginning in the 1970s, as costs were declining, manufacturers began producing solar PV cells for terrestrial applications. Solar PV found a new niche in areas distant from power lines where electricity was needed, such as oil rigs and Coast Guard lighthouses. The government continued to support the industry through the 1970s and early 1980s with new R&D efforts under Presidents Richard Nixon and Gerald Ford, both Republicans, and President Jimmy Carter, a Democrat. As a direct result of government involvement in solar PV development, 13 of the 14 top innovations in PV over the past three decades were developed with the help of federal dollars, nine of which were fully funded by the public sector. [21]
More recently than nuclear, wind, or solar, the development of the shale gas industry and subsequent boom in shale gas development in the United States was enabled through government support. [22] [23] The history of shale gas fracking in the United States was punctuated by the successive developments of massive hydraulic fracturing (MHF), microseismic imaging, horizontal drilling, and other key innovations that when combined made the once unreachable energy resource technically recoverable. Along each stage of the innovation pipeline – from basic research to applied R&D to cost-sharing on demonstration projects to tax policy support for deployment – public-private partnerships and federal investments helped push hydraulic fracturing in shale into full commercial competitiveness. Through a combination of federally funded geologic research beginning in the 1970s, public-private collaboration on demonstration project and R&D priorities, and tax policy support for unconventional technologies, the federal government played a key role in the development of shale gas in the United States.
Investigations have uncovered the crucial role of the government in the development of other energy technologies and industries, including aviation and jet engines, synthetic fuels, [18] advanced natural gas turbines, [24] and advanced diesel internal combustion engines. [25]
Renewable energy is energy from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power, and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source, although this is controversial. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification. This has several benefits: electricity can move heat and vehicles efficiently and is clean at the point of consumption. Variable renewable energy sources are those that have a fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity, bioenergy, or geothermal power.
Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
The Energy Policy Act of 2005 is a federal law signed by President George W. Bush on August 8, 2005, at Sandia National Laboratories in Albuquerque, New Mexico. The act, described by proponents as an attempt to combat growing energy problems, changed US energy policy by providing tax incentives and loan guarantees for energy production of various types. The most consequential aspect of the law was to greatly increase ethanol production to be blended with gasoline. The law also repealed the Public Utility Holding Company Act of 1935, effective February 2006.
The energy policy of the United States is determined by federal, state, and local entities. It addresses issues of energy production, distribution, consumption, and modes of use, such as building codes, mileage standards, and commuting policies. Energy policy may be addressed via legislation, regulation, court decisions, public participation, and other techniques.
Energy in the United Kingdom came mostly from fossil fuels in 2021. Total energy consumption in the United Kingdom was 142.0 million tonnes of oil equivalent in 2019. In 2014, the UK had an energy consumption per capita of 2.78 tonnes of oil equivalent compared to a world average of 1.92 tonnes of oil equivalent. Demand for electricity in 2023 was 29.6 GW on average, supplied through 235 TWh of UK-based generation and 24 TWh of energy imports.
Renewable fuels are fuels produced from renewable resources. Examples include: biofuels, Hydrogen fuel, and fully synthetic fuel produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.
Renewable energy in Germany is mainly based on wind and biomass, plus solar and hydro. Germany had the world's largest photovoltaic installed capacity until 2014, and as of 2023 it has over 82 GW. It is also the world's third country by installed total wind power capacity, 64 GW in 2021 and second for offshore wind, with over 7 GW. Germany has been called "the world's first major renewable energy economy".
The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.
Renewable energy in Australia is mainly based on biomass, solar, wind, and hydro generation. Over a third of electricity is generated from renewables, and is increasing, with a target to phase out coal power before 2040. Wind energy and rooftop solar have particularly grown since 2010. The growth has been stimulated by government energy policy in order to limit the rate of climate change in Australia that has been brought about by the use of fossil fuels. Pros and cons of various types of renewable energy are being investigated, and more recently there have been trials of green hydrogen and wave power.
Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. In 2019, nearly 75% of new installed electricity generation capacity used renewable energy and the International Energy Agency (IEA) has predicted that by 2025, renewable capacity will meet 35% of global power generation.
According to data from the US Energy Information Administration, renewable energy accounted for 8.4% of total primary energy production and 21% of total utility-scale electricity generation in the United States in 2022.
Renewable energy in Finland increased from 34% of the total final energy consumption (TFEC) in 2011 to 48% by the end of 2021, primarily driven by bioenergy (38%), hydroelectric power (6.1%), and wind energy (3.3%). In 2021, renewables covered 53% of heating and cooling, 39% of electricity generation, and 20% of the transport sector. By 2020, this growth positioned Finland as having the third highest share of renewables in TFEC among International Energy Agency (IEA) member countries.
The renewable-energy industry is the part of the energy industry focusing on new and appropriate renewable energy technologies. Investors worldwide are increasingly paying greater attention to this emerging industry. In many cases, this has translated into rapid renewable energy commercialization and considerable industry expansion. The wind power, solar power and hydroelectric power industries provide good examples of this.
Energy subsidies are measures that keep prices for customers below market levels, or for suppliers above market levels, or reduce costs for customers and suppliers. Energy subsidies may be direct cash transfers to suppliers, customers, or related bodies, as well as indirect support mechanisms, such as tax exemptions and rebates, price controls, trade restrictions, and limits on market access.
An energy market is a type of commodity market on which electricity, heat, and fuel products are traded. Natural gas and electricity are examples of products traded on an energy market. Other energy commodities include: oil, coal, carbon emissions, nuclear power, solar energy and wind energy. Due to the difficulty in storing and transporting energy, current and future prices in energy are rarely linked. This is because energy purchased at a current price is difficult to store and then sell at a later date. There are two types of market schemes : spot market and forward market.
Renewable energy in Canada represented 17.3% of the Total Energy Supply (TES) in 2020, following natural gas at 39.1% and oil at 32.7% of the TES.
The energy policy of the Obama administration was defined by an "all-of-the-above" approach which offered federal support for renewable energy deployment, increased domestic oil and gas extraction, and export of crude oil and natural gas. His presidency's first term was shaped by the failure of his signature climate legislation, the American Clean Energy and Security Act, to pass, and then climate and energy disasters including the Deepwater Horizon oil spill in 2010 and then Hurricane Sandy, which took place during the 2012 election. In his second term, Obama lifted the ban on crude oil exports and approved liquified natural gas exports; his planned regulatory approach to reducing greenhouse pollution in the electricity sector, the Clean Power Plan, was blocked by the U.S. Supreme Court.
Policy makers often debate the constraints and opportunities of renewable energy.
The energy sector of Ohio consists of thousands of companies and cities representing the oil, natural gas, coal, solar, wind energy, fuel cell, biofuel, geothermal, hydroelectric, and other related industries. Oil and natural gas accounts for $3.1 billion annually in sales while ethanol generates $750 million. Toledo is a national hub in solar cell manufacturing, and the state has significant production of fuel cells. In 2008, the state led the country in alternative energy manufacturing according to Site Selection Magazine, while the natural gas industry has experienced growth due to the expansion of shale gas.
Energy in Jordan describes energy and electricity production, consumption and import in Jordan. Jordan is among the highest in the world in dependency on foreign energy sources, with 92.3% of the country's energy supply being imported.
"Fossil-fuel subsidies generally take two forms. Production subsidies...[and]...Consumption subsidies...