Engine room

Last updated
Main engine deck of a cargo vessel DSCF0443.JPG
Main engine deck of a cargo vessel
Location of a ship's engine room on a bulk carrier Bulk carrier general arrangement english.svg
Location of a ship's engine room on a bulk carrier
Engine room of the Mercy Ship Caribbean Mercy in 1997. Her propulsion diesel is an MAK. Engine room Caribbean Mercy.jpg
Engine room of the Mercy Ship Caribbean Mercy in 1997. Her propulsion diesel is an MAK.
EMD diesels in the engine room of the Research Vessel Davidson circa 2002. Davidson w.jpg
EMD diesels in the engine room of the Research Vessel Davidson circa 2002.

On a ship, the engine room (ER) [1] is the compartment where the machinery for marine propulsion is located. The engine room is generally the largest physical compartment of the machinery space. It houses the vessel's prime mover, usually some variations of a heat engine (steam engine, diesel engine, gas or steam turbine). On some ships, there may be more than one engine room, such as forward and aft, or port or starboard engine rooms, or may be simply numbered. To increase a vessel's safety and chances of surviving damage, the machinery necessary for the ship's operation may be segregated into various spaces.

Contents

The engine room is usually located near the bottom, at the rear or aft end of the vessel, and comprises few compartments. This design maximizes the cargo carrying capacity of the vessel and situates the prime mover close to the propeller, minimizing equipment cost and problems posed from long shaft lines. On some ships, the engine room may be situated mid-ship, such as on vessels built from 1900 to the 1960s, or forward and even high, such as on diesel-electric vessels.

Equipment

Engines

Engine room of the Finnish submarine Vesikko in 2010 Vesikko engine room view aft.JPG
Engine room of the Finnish submarine Vesikko in 2010

The engine room of a motor vessel typically contains several engines for different purposes. Main, or propulsion, engines are used to turn the ship's propeller and move the ship through the water. They typically burn diesel oil or heavy fuel oil, and may be able to switch between the two. There are many propulsion arrangements for motor vessels, some including multiple engines, propellers, and gearboxes.[ citation needed ]

Smaller, but still large engines drive electrical generators that provide power for the ship's electrical systems. Large ships typically have three or more synchronized generators to ensure smooth operation. The combined output of a ship's generators is well above the actual power requirement to accommodate maintenance or the loss of one generator.[ citation needed ]

On a steamship, power for both electricity and propulsion is provided by one or more large boilers giving rise to the alternate name boiler room. High pressure steam from the boiler is used to drive reciprocating engines or turbines for propulsion, and also turbo generators for electricity. Besides propulsion and auxiliary engines, a typical engine room contains many smaller engines, including generators, air compressors, feed pumps, and fuel pumps. Today, these machines are usually powered by small diesel engines or electric motors, but may also use low-pressure steam.[ citation needed ]

Engine cooling

The engine(s) get required cooling from liquid-to-liquid heat exchangers connected to fresh seawater or divertible to recirculate through tanks of seawater in the engine room. Both supplies draw heat from the engines via the coolant and oil lines. Heat exchangers are plumbed in so that oil is represented by a yellow mark on the flange of the pipes, and relies on paper type gaskets to seal the mating faces of the pipes. Sea water, or brine, is represented by a green mark on the flanges and internal coolant is represented by blue marks on the flanges.[ citation needed ]

Thrusters

In addition to this array of equipment is the ship's thruster system (on modern vessels fitted with this equipment), typically operated by electric motors controlled from the bridge. These thrusters are laterally mounted propellers that can suck or blow water from port to starboard (i.e. left to right) or vice versa. They are normally used only in maneuvering, e.g. docking operations, and are often banned in tight confines, e.g. drydocks.[ citation needed ]

Thrusters, like main propellers, are reversible by hydraulic operation. Small embedded hydraulic motors rotate the blades up to 180 degrees to reverse the direction of the thrust.[ citation needed ] A variant on this is the azipod, which are propellers mounted in a swiveling pod that can rotate to direct thrust in any direction, making fine steering easier, and allowing a ship to move sideways up to a dock, when used in conjunction with a bow thruster.

Engine Control Room

Engine control room on modern merchant vessel Engine control room on oil tanker.jpg
Engine control room on modern merchant vessel

Modern merchant vessels have a special space inside the Engine Room called Engine Control Room (ECR). This is the place where all machinery could be remotely observed and controlled. There are situated also most of or at least main electricity breakers. ECR is connected with the Bridge through compulsory engine-room telegraph which provides visual indication of the orders and responses. [2] Other means of communication are phone and emergency phone lines as well as LAN cables or fiber-optic cables depending on distance.

Human presence is not required to be round the clock in the ER due to high level of automation and computerization. Unattended machinery spaces are common practice nowadays.

Safety

Fire precautions

Engine rooms are noisy, hot, usually dirty, and potentially dangerous. The presence of flammable fuel, high voltage (HV) electrical equipment and internal combustion engines (ICE) means that a serious fire hazard exists in the engine room, which is monitored continuously by the ship's engine department and various monitoring systems.[ citation needed ]

Ventilation

Engine room of the SS Shieldhall SS Shieldhall engine room.jpg
Engine room of the SS Shieldhall

If equipped with internal combustion or turbine engines, engine rooms employ some means of providing air for the operation of the engines and associated ventilation. If individuals are normally present in these rooms, additional ventilation should be available to keep engine room temperatures to acceptable limits. If personnel are not normally in the engine space, as in many pleasure boats, the ventilation need only be sufficient to supply the engines with intake air. This would require an unrestricted hull opening of the same size as the intake area of the engine itself, assuming the hull opening is in the engine room itself. Commonly, screens are placed over such openings and if this is done, airflow is reduced by approximately 50%, so the opening area is increased appropriately. The requirement for general ventilation and the requirement for sufficient combustion air are quite different. A typical arrangement might be to make the opening large enough to provide intake air plus 1000 Cubic Feet per Minute (CFM) for additional ventilation. Engines pull sufficient air into the engine room for their own operation. However, additional airflow for ventilation usually requires intake and exhaust blowers.[ citation needed ]

History

Engine rooms were separated from its associated fire room on fighting ships from the 1880s through the 1960s. If either experienced damage putting it out of action, the associated engine room could get steam from another fire room.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Engine</span> Machine that converts one or more forms of energy into mechanical energy (of motion)

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

<span class="mw-page-title-main">Electric boat</span> Type of watercraft

An electric boat is a powered watercraft driven by electric motors, which are powered by either on-board battery packs, solar panels or generators.

<span class="mw-page-title-main">Gas turbine</span> Type of internal and continuous combustion engine

A gas turbine or gas turbine engine is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part and are, in the direction of flow:

<span class="mw-page-title-main">Icebreaker</span> Ship that is able to navigate through ice-covered waters

An icebreaker is a special-purpose ship or boat designed to move and navigate through ice-covered waters, and provide safe waterways for other boats and ships. Although the term usually refers to ice-breaking ships, it may also refer to smaller vessels, such as the icebreaking boats that were once used on the canals of the United Kingdom.

<span class="mw-page-title-main">Diesel–electric powertrain</span> Propulsion system for vehicles

A diesel–electric transmission, or diesel–electric powertrain, is a transmission system powered by diesel engines for vehicles in road, rail, and marine transport. Diesel–electric transmission is similar to petrol–electric transmission, which is powered by petrol engines.

<span class="mw-page-title-main">Azimuth thruster</span> Steerable propulsion pod under a watercraft

An azimuth thruster is a configuration of marine propellers placed in pods that can be rotated to any horizontal angle (azimuth), making a rudder redundant. These give ships better maneuverability than a fixed propeller and rudder system.

<span class="mw-page-title-main">Volvo Penta</span> Swedish engine manufacturing subsidiary

Volvo Penta is a Swedish marine and industrial engine manufacturer, a joint stock company within the Volvo Group. Volvo Penta evolved from a foundry in Skövde 1907, when the first marine engine, the B1, was manufactured. The name Penta was created about 1916. The Penta company soon became an established internal combustion engine manufacturer, which in 1927 delivered the engine for Volvo's first passenger car.

USS <i>Makin Island</i> (LHD-8) US Navy amphibious assault ship

USS Makin Island (LHD-8), a Wasp-class amphibious assault ship, is the second ship of the United States Navy to be named for Makin Island, target of the Marine Raiders' Makin Island raid early on in the United States' involvement in World War II.

<span class="mw-page-title-main">Azipod</span> Electric drive azimuth thruster

Azipod is a trademarked azimuth thruster pod design, a marine propulsion unit consisting of a fixed pitch propeller mounted on a steerable gondola ("pod") containing the electric motor driving the propeller, allowing ships to be more maneuverable. They were developed in Finland in the late 1980s jointly by Wärtsilä Marine, Strömberg and the Finnish National Board of Navigation.

<span class="mw-page-title-main">Engine officer</span> Licensed mariner responsible for propulsion plants and support systems

An engine officer or simply engineer, is a licensed mariner qualified and responsible for operating and maintaining the propulsion plants and support systems for a watercraft and its crew, passengers and cargo. Engineering officers are usually educated and qualified as engineering technicians.

Overspeed is a condition in which an engine is allowed or forced to turn beyond its design limit. The consequences of running an engine too fast vary by engine type and model and depend upon several factors, the most important of which are the duration of the overspeed and the speed attained. With some engines, a momentary overspeed can result in greatly reduced engine life or catastrophic failure. The speed of an engine is typically measured in revolutions per minute (rpm).

<span class="mw-page-title-main">Marine propulsion</span> Systems for generating thrust for ships and boats on water

Marine propulsion is the mechanism or system used to generate thrust to move a watercraft through water. While paddles and sails are still used on some smaller boats, most modern ships are propelled by mechanical systems consisting of an electric motor or internal combustion engine driving a propeller, or less frequently, in pump-jets, an impeller. Marine engineering is the discipline concerned with the engineering design process of marine propulsion systems.

<i>Taymyr</i> (1987 icebreaker) Nuclear-powered shallow draft icebreaker

Taymyr is a shallow-draft nuclear-powered icebreaker, and the first of two similar vessels. She was built in 1989 for the Soviet Union in Finland, at the Helsinki Shipyard by Wärtsilä Marine, by order of the Murmansk Shipping Company. Her sister ship is Vaygach.

<i>Vaygach</i> (1989 icebreaker)

Vaygach is a shallow-draught nuclear-powered icebreaker. She was built in 1989 for the Soviet Union by Wärtsilä Marine Helsinki Shipyard in Finland by order of the Murmansk Shipping Company and its KL-40 reactor was installed at the Baltic Shipyard in St. Petersburg. Her sister ship is Taymyr.

On maritime vessels, noise and vibration are not the same but they have the same origin and come in many forms. The methods to handle the related problems are similar, to a certain level, where most shipboard noise problems are reduced by controlling vibration.

<span class="mw-page-title-main">Integrated electric propulsion</span> Arrangement of marine propulsion systems that generators generate electricity

Integrated electric propulsion (IEP), full electric propulsion (FEP) or integrated full electric propulsion (IFEP) is an arrangement of marine propulsion systems such that gas turbines or diesel generators or both generate three-phase electricity which is then used to power electric motors turning either propellers or waterjet impellors. It is a modification of the combined diesel-electric and gas propulsion system for ships which eliminates the need for clutches and reduces or eliminates the need for gearboxes by using electrical transmission rather than mechanical transmission of energy, so it is a series hybrid electric propulsion, instead of parallel.

<span class="mw-page-title-main">Fire room</span> ( Boiler room )

On a ship, the fire room, or FR or boiler room or stokehold, referred to the space, or spaces, of a vessel where water was brought to a boil. The steam was then transmitted to a separate engine room, often located immediately aft, where it was utilized to power the vessel. To increase the safety and damage survivability of a vessel, the machinery necessary for operations may be segregated into various spaces, the fire room was one of these spaces, and was among the largest physical compartment of the machinery space. On some ships, the space comprised more than one fire room, such as forward and aft, or port or starboard fire rooms, or may be simply numbered. Each room was connected to a flue, exhausting into a stack ventilating smoke.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<i>Sisu</i> (1938 icebreaker) Finnish icebreaker built in 1939

Sisu was a Finnish state-owned icebreaker. Built in 1939 at Wärtsilä Hietalahti Shipyard in Helsinki, she was one of the world's first diesel-electric icebreakers. In addition to icebreaking duties, she served as a submarine tender for the Finnish Navy during the summer months until the end of the Continuation War.

JS <i>Nichinan</i> Nichinan-class oceanographic research ship of JMSDF

JS Nichinan (AGS-5105) is the only ship of her type of oceanographic research ship for the Japan Maritime Self-Defense Force.

References

  1. Wise Geek: What is the Engine Department on a US Merchant Ship?
  2. IMO (2014). "Chapter II-1". SOLAS Consolidated Edition 2014 (6th ed.). Marine Press. p. 98. ISBN   978-92-801-1594-9.

Archived 2015-05-12 at the Wayback Machine