Epidemiology of representations

Last updated

Epidemiology of representations, or cultural epidemiology, is a theory for explaining cultural phenomena by examining how mental representations get distributed within a population. The theory uses medical epidemiology as its chief analogy, because "...macro-phenomena such as endemic and epidemic diseases are unpacked in terms of patterns of micro-phenomena of individual pathology and inter-individual transmission". [1] Representations transfer via so-called "cognitive causal chains" (cf. Table 1); these representations constitute a cultural phenomenon by achieving stability of public production and mental representation within the existing ecology and psychology of a populace, the latter including properties of the human mind. Cultural epidemiologists have emphasized the significance of evolved properties, such as the existence of naïve theories, domain-specific abilities and principles of relevance. [2]

Contents

The theory has been formulated mainly by the French social and cognitive scientist Dan Sperber for the study of society and culture, by taking into account evidence from anthropology and cognitive science. [1]

Theory of cognitive causal chains

Cognitive causal chains

A cognitive causal chain (CCC) links a mental representation (e.g. satisfaction, justification, truth-value or similarity of content) with individual behaviors and mental processes (e.g. perception, inference, remembering, and the carrying out of an intention). More generally, it links something that can be perceived with the evolved and domain-specific process that makes it perceivable; for example, a visual perception of a stimulus that leads to a mental representation of the stimulus that triggered it.

Here is an example of a CCC:

On October 31, at 7:30 p.m., Mrs. Jones's doorbell rings. Mrs. Jones hears the doorbell, and assumes that there is somebody at the door. She remembers it is Halloween: she enjoyed receiving treats as a child, and now, as an adult, she enjoys giving them. She guesses that there must be children at the door ready to trick-or-treat, and that, if she opens, she will be able to give them the candies she has bought for the occasion. Mrs. Jones decides to open the door, and does so. [1]

Social cognitive causal chains (SCCCs)

Social cognitive causal chains (SCCCs) are inter-individual CCCs. A SCCC always implies individual CCCs but a CCC just leads to a SCCC if it involves an inter-individual act of communication or other effective forms of non-communicative interaction.

Here is an example of a SCCC involving an act of communication (ringing a doorbell):

Billy and Julia are following the Halloween practice of going from door to door in the street, hoping to be given candies. When they reach Mrs. Jones's door, Billy rings the bell with the intention of letting the house owner know that someone is at the door, and of making her open the door ... [plug in Mrs. Jones's story as told above] ... Mrs. Jones opens the door. Billy and Julia shout 'trick or treats!' Mrs. Jones gives them candies. [1]

Cultural cognitive causal chains

Human interaction involves many cases of ad-hoc cultural cognitive causal chains (SCCCs) that do not follow a significant long-term pattern over many people. Yet, other SCCCs can be long-lasting, systematical, and across a large population; for example, the Halloween custom mentioned above. The latter kinds of SCCCs arguably stabilize mental representations intra- and inter-individually to an extent that they can be considered as cultural if their behavior (practices and resulting artifacts) significantly represent their population. A CCCC therefore always implies SCCCs but a SCCC just leads to a CCCC if it involves one or more SCCCs that significantly indicate mental representations or public productions.[ citation needed ]

Cognitive causal chain (CCC)

A causal chain where each causal link instantiates a semantic relationship

Social cognitive causal chain (SCCC)

A CCC that extends over several individuals

Cultural cognitive causal chain (CCCC)

A social CCC that stabilizes mental representations and public productions in a population and its environment

Table 1: Overview of cognitive causal chains constituting the epidemiology of representations (from [1] ).

Cultural stability, diversity, and massive modularity

Epidemiology of representations suggests that both cultural diversity and stability (macro-level) together can be explained by the massive modularity of the human brain and mind (micro-level) and SCCCs. This means that the manifold of human cultural behavior is ultimately explained by the manifold of domain-specific human cognitive abilities (mental representations) and respective SCCC. This claim would have broad impact, when applicable. It is discussed in further detail by Sperber and Hirschfeld for the cases of folkbiology, folksociology, and supernaturalism. [2] Here is an example: Think about a human cognitive sub-system that must have been very important for human cognitive evolution (i.e. a module with an innate basis); like the ability that allows humans to recognize and interpret visual patterns as faces. [3] [4] One can call this cognitive sub-system the human "face recognition module". It was most likely built by evolution to recognize and interpret animal faces via decoding facial expressions produced by a complex system of facial muscles. Humans with certain types of brain damage lose this ability (c.f. prosopagnosia, Social-Emotional Agnosia). Yet, the module also processes visual input that is relatively similar to patterns of natural faces. Such can be cultural artifacts like portraits, caricatures, masks, and made-up faces.[ citation needed ]

According to the epidemiology of representation the effectiveness (defined by its relevance) of a public production depends on the extent to which it exploits a human cognitive module. Cultural artifacts "...rely on and exploit a natural disposition. Often, they exaggerate crucial features, as in caricature or in make up, and constitute what ethologists call 'superstimuli.'" [2] Two domains of cognitive modules can therefore be distinguished: the proper, natural domain and the actual, cultural domain. In the above example, the first relates to natural faces, the second to portraits, caricatures, masks, and made-up faces. Those categories can intersect, like shown in Figure 2. Since made-up faces literally overlap the proper with the actual domain, they are the most effective and relevant public product in the example. Therefore, they lead to the most stable CCCC, if they significantly reflect the population's behavior. The other stimuli in the cultural domain will theoretically be as efficient and stable depending on the extent that they exploit the "face perception module". [2]

Figure 2: A hypothetical Venn diagram of the cognitive domains of the "human face module". Domains of a cognitive module.png
Figure 2: A hypothetical Venn diagram of the cognitive domains of the "human face module".

Inter-individual stability of mental representations

Epidemiology of representations states that there must be a SCCC, the mechanism inter-linking a mental representation with an individual behavior, for the latter and explains its stability over time and space by the relevance theoretical status of the underlying behavior. There are three minimal conditions for an inter-individual replication that ensures transfer stability.

For b to be an actual replication of a,

  1. b must be caused by a (together with situational and background conditions)
  2. b must be similar in relevant respects to a
  3. b must inherit from a the properties that make it relevantly similar to a. [1]

Here is an example:

Imagine one (A) produces a line-drawing (a), see Figure 3, and then shows it to a friend (B) for ten seconds. An asks the friend ten minutes later to reproduce it as exactly as possible with another line-drawing (b). After that, a second person is shown for ten seconds the figure drawn by your friend and presented with the same task. This is iterated with nine further participants. Now, theoretically, it is most likely that each drawing will differ from its model (a) and that the more distant two drawings are in the chain, the more they are likely to differ. Imagine further, you conduct exactly the same little experiment, but with the line-drawing in Figure 4. The result, you theoretically get this time, may be such that "...the distance in the chain of two drawings on the one hand, and their degree of difference on the other hand should be two variables independent of one another."; [1] meaning that it was a chain of stable replications.


Theoretically, this is because Figure 4 looks like a five-branched star, drawn without lifting the pencil, whereas Figure 3 has no perceivable meaning (at least in our western culture), the second chain is a SCCC but not so the first. Arguably and on the one hand, the second causal chain was driven by perceiving the shared meaning of the stimulus by inferring the underlying mental representation and a sequential reproduction of by new behavior. On the other hand, the first causal chain was driven by mere imitation that does not crucially depends on recognition of the underlying meaning. There are forms of inter-individual transfer of behavior that blend reproduction and imitation to different extends. However, the more the meaning of a stimulus is actually reproduced rather than imitated by a subject, the more stable the transfer of the underlying mental representation is supposed to be over time. [5]

Epidemiology of representations, cognitive science and domain specificity

Like cognitive science, the epidemiology of representations is also based on the assumption that domain specificity characterizes cognitive abilities or mechanisms. [6] Epidemiology of representations assumes that human animals are cognitively predefined by their evolved neurophysiology (i.e. their cognition is massively modular). However, it also acknowledges that cognitive development plays a functional role for the formation of mental representations, concepts, intuitive theories, and the like. [1] [2] Accordingly, theories in cognitive science argue that humans are evolutionarily equipped with a certain brain-body setup (c.f. common coding theory) that allows them to encode and decode specific kinds of information to their memory via interacting with their environment. This is sensory-specific (i.e. visual-, acoustic-, tactile-, and olfactory perception etc.) and task or reasoning specific (i.e. formulation of intuitive theories). Hence, by these theories, humans are assumed to have (1) an innate cognitive potential that (2) is realized during a natural cognitive development. [6] [7] The reason for the first argument comes from fields like evolutionary anthropology and evolutionary psychology, stating that evolution has been selecting merely those animals that have evolved adaptive mental and neural mechanisms to efficiently cope with specific challenges regarding their environment (e.g. getting food, shelter, mates, etc.). [8] The reason for the second argument comes from cognitive development, stating that animals (especially humans) in their infancy are highly sensitive to input patterns, since their cognitive system automatically and rapidly adapts their environment. [7]

Since the human brain is organized into areas that focus on the processing of distinct sensory input and output and also interact with one another, humans are assumed to learn and perform best in processing those patterns of information for which their neurophysiological system has been evolved. [6] Mental representations manifest, for example, in human long-term memory (Figure 1). Other evidence for massive modularity is that human cognitive performance for respective domains correlates with the degree of damage to the corresponding cortical areas. [9]

Epidemiology of representations versus memetics

The cognitive approach in the epidemiology of representations differs from other philosophical theories with evolutionary orientation, such as memetics, formulated by the British ethologist and evolutionary biologist Richard Dawkins (cf. [10] [11] ). Roughly speaking, the three crucial differences between the two approaches are the following:

  1. epidemiology of representations atomizes culture to mental representations and individual behavior, whereas memetics atomizes culture to memes
  2. individual behavior in SCCC is replicated, whereas memes are imitated (cf. Inter-Individual Stability of Mental Representations)
  3. stability of mental representation over time is explained by relevance and domain specificity of individual behavior, whereas stability of memes depends on the benefit of their own transmission. [5]

With the epidemiology of representations, Sperber has argued that the notion of meaning is disregarded in memetics and that this is questionable since the study of society and culture without an explanation of how meaning is perceived and reproduced is contradictory. [5] If memetics, nevertheless, attempts to explain culture based on evolutionary biology, it will need to present empirical evidence for the transfer of memes, that is "...showing that elements of culture inherit all or nearly all their relevant properties from other elements of culture that they replicate ". [5]

Related Research Articles

Evolutionary psychology is a theoretical approach in psychology that examines cognition and behavior from a modern evolutionary perspective. It seeks to identify human psychological adaptations with regards to the ancestral problems they evolved to solve. In this framework, psychological traits and mechanisms are either functional products of natural and sexual selection or non-adaptive by-products of other adaptive traits.

A meme is an idea, behavior, or style that spreads by means of imitation from person to person within a culture and often carries symbolic meaning representing a particular phenomenon or theme. A meme acts as a unit for carrying cultural ideas, symbols, or practices, that can be transmitted from one mind to another through writing, speech, gestures, rituals, or other imitable phenomena with a mimicked theme. Supporters of the concept regard memes as cultural analogues to genes in that they self-replicate, mutate, and respond to selective pressures. In popular language, a meme may refer to an Internet meme, typically an image, that is remixed, copied, and circulated in a shared cultural experience online.

Memetics is the study of information and culture based on an analogy with Darwinian evolution. Proponents of memetics, as evolutionary culture, describe it as an approach of cultural information transfer. Those arguing for the Darwinian theoretical account tend to begin with theoretical analogies from existing biological evolutionary models. Memetics describes how ideas or cultural information can propagate, but doesn't necessarily imply a meme's concept is factual.

<span class="mw-page-title-main">Jerry Fodor</span> American philosopher (1935–2017)

Jerry Alan Fodor was an American philosopher and the author of many crucial works in the fields of philosophy of mind and cognitive science. His writings in these fields laid the groundwork for the modularity of mind and the language of thought hypotheses, and he is recognized as having had "an enormous influence on virtually every portion of the philosophy of mind literature since 1960." At the time of his death in 2017, he held the position of State of New Jersey Professor of Philosophy, Emeritus, at Rutgers University, and had taught previously at the City University of New York Graduate Center and MIT.

Modularity of mind is the notion that a mind may, at least in part, be composed of innate neural structures or mental modules which have distinct, established, and evolutionarily developed functions. However, different definitions of "module" have been proposed by different authors. According to Jerry Fodor, the author of Modularity of Mind, a system can be considered 'modular' if its functions are made of multiple dimensions or units to some degree. One example of modularity in the mind is binding. When one perceives an object, they take in not only the features of an object, but the integrated features that can operate in sync or independently that create a whole. Instead of just seeing red, round, plastic, and moving, the subject may experience a rolling red ball. Binding may suggest that the mind is modular because it takes multiple cognitive processes to perceive one thing.

Social cognition is a topic within psychology that focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions.

The language of thought hypothesis (LOTH), sometimes known as thought ordered mental expression (TOME), is a view in linguistics, philosophy of mind and cognitive science, forwarded by American philosopher Jerry Fodor. It describes the nature of thought as possessing "language-like" or compositional structure. On this view, simple concepts combine in systematic ways to build thoughts. In its most basic form, the theory states that thought, like language, has syntax.

The study of how language influences thought, and vice-versa, has a long history in a variety of fields. There are two bodies of thought forming around this debate. One body of thought stems from linguistics and is known as the Sapir–Whorf hypothesis. There is a strong and a weak version of the hypothesis which argue for more or less influence of language on thought. The strong version, linguistic determinism, argues that without language there is and can be no thought, while the weak version, linguistic relativity, supports the idea that there are some influences from language on thought. And on the opposing side, there are 'language of thought' theories (LOTH) which believe that public language is inessential to private thought. LOTH theories address the debate of whether thought is possible without language which is related to the question of whether language evolved for thought. These ideas are difficult to study because it proves challenging to parse the effects of culture versus thought versus language in all academic fields.

Pascal Robert Boyer is an American cognitive anthropologist and evolutionary psychologist of French origin, mostly known for his work in the cognitive science of religion. He taught at the University of Cambridge for eight years, before taking up the position of Henry Luce Professor of Individual and Collective Memory at Washington University in St. Louis, where he teaches classes on evolutionary psychology and anthropology. He was a Guggenheim Fellow and a visiting professor at the University of California, Santa Barbara and the University of Lyon, France. He studied philosophy and anthropology at University of Paris and Cambridge, with Jack Goody, working on memory constraints on the transmission of oral literature. Boyer is a Member of the American Academy of Arts and Sciences.

Dual inheritance theory (DIT), also known as gene–culture coevolution or biocultural evolution, was developed in the 1960s through early 1980s to explain how human behavior is a product of two different and interacting evolutionary processes: genetic evolution and cultural evolution. Genes and culture continually interact in a feedback loop: changes in genes can lead to changes in culture which can then influence genetic selection, and vice versa. One of the theory's central claims is that culture evolves partly through a Darwinian selection process, which dual inheritance theorists often describe by analogy to genetic evolution.

Cultural selection theory is the study of cultural change modelled on theories of evolutionary biology. Cultural selection theory has so far never been a separate discipline. However it has been proposed that human culture exhibits key Darwinian evolutionary properties, and "the structure of a science of cultural evolution should share fundamental features with the structure of the science of biological evolution". In addition to Darwin's work the term historically covers a diverse range of theories from both the sciences and the humanities including those of Lamark, politics and economics e.g. Bagehot, anthropology e.g. Edward B. Tylor, literature e.g. Ferdinand Brunetière, evolutionary ethics e.g. Leslie Stephen, sociology e.g. Albert Keller, anthropology e.g. Bronislaw Malinowski, Biosciences e.g. Alex Mesoudi, geography e.g. Richard Ormrod, sociobiology and biodiversity e.g. E.O. Wilson, computer programming e.g. Richard Brodie, and other fields e.g. Neoevolutionism, and Evolutionary archaeology.

Evolutionary educational psychology is the study of the relation between inherent folk knowledge and abilities and accompanying inferential and attributional biases as these influence academic learning in evolutionarily novel cultural contexts, such as schools and the industrial workplace. The fundamental premises and principles of this discipline are presented below.

<span class="mw-page-title-main">Dan Sperber</span> French academic (born 1942)

Dan Sperber is a French social and cognitive scientist and philosopher. His most influential work has been in the fields of cognitive anthropology, linguistic pragmatics, psychology of reasoning, and philosophy of the social sciences. He has developed: an approach to cultural evolution known as the epidemiology of representations or cultural attraction theory as part of a naturalistic reconceptualization of the social; relevance theory; the argumentative theory of reasoning. Sperber formerly Directeur de Recherche at the Centre National de la Recherche Scientifique is Professor in the Departments of Cognitive Science and of Philosophy at the Central European University in Budapest.

Domain specificity is a theoretical position in cognitive science that argues that many aspects of cognition are supported by specialized, presumably evolutionarily specified, learning devices. The position is a close relative of modularity of mind, but is considered more general in that it does not necessarily entail all the assumptions of Fodorian modularity. Instead, it is properly described as a variant of psychological nativism. Other cognitive scientists also hold the mind to be modular, without the modules necessarily possessing the characteristics of Fodorian modularity.

A cognitive module in cognitive psychology is a specialized tool or sub-unit that can be used by other parts to resolve cognitive tasks. It is used in theories of the modularity of mind and the closely related society of mind theory and was developed by Jerry Fodor. It became better known throughout cognitive psychology by means of his book, The Modularity of Mind (1983). The nine aspects he lists that make up a mental module are domain specificity, mandatory operation, limited central accessibility, fast processing, informational encapsulation,‘shallow’ outputs, fixed neural architecture, characteristic and specific breakdown patterns, and characteristic ontogenetic pace and sequencing. Not all of these are necessary for the unit to be considered a module, but they serve as general parameters.

Cognitive science of religion is the study of religious thought, theory, and behavior from the perspective of the cognitive and evolutionary sciences. Scholars in this field seek to explain how human minds acquire, generate, and transmit religious thoughts, practices, and schemas by means of ordinary cognitive capacities.

The evolutionary psychology of religion is the study of religious belief using evolutionary psychology principles. It is one approach to the psychology of religion. As with all other organs and organ functions, the brain's functional structure is argued to have a genetic basis, and is therefore subject to the effects of natural selection and evolution. Evolutionary psychologists seek to understand cognitive processes, religion in this case, by understanding the survival and reproductive functions they might serve.

Psi-theory, developed by Dietrich Dörner at the University of Bamberg, is a systemic psychological theory covering human action regulation, intention selection and emotion. It models the human mind as an information processing agent, controlled by a set of basic physiological, social and cognitive drives. Perceptual and cognitive processing are directed and modulated by these drives, which allow the autonomous establishment and pursuit of goals in an open environment.

Universal Darwinism, also known as generalized Darwinism, universal selection theory, or Darwinian metaphysics, is a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. Universal Darwinism aims to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can apply to explain evolution in a wide variety of other domains, including psychology, linguistics, economics, culture, medicine, computer science, and physics.

Evolutionary psychology has traditionally focused on individual-level behaviors, determined by species-typical psychological adaptations. Considerable work, though, has been done on how these adaptations shape and, ultimately govern, culture. Tooby and Cosmides (1989) argued that the mind consists of many domain-specific psychological adaptations, some of which may constrain what cultural material is learned or taught. As opposed to a domain-general cultural acquisition program, where an individual passively receives culturally-transmitted material from the group, Tooby and Cosmides (1989), among others, argue that: "the psyche evolved to generate adaptive rather than repetitive behavior, and hence critically analyzes the behavior of those surrounding it in highly structured and patterned ways, to be used as a rich source of information out of which to construct a 'private culture' or individually tailored adaptive system; in consequence, this system may or may not mirror the behavior of others in any given respect.".

References

  1. 1 2 3 4 5 6 7 8 Sperber, D. (2001). "Conceptual tools for a natural science of society and culture (Radcliffe-Brown Lecture in Social Anthropology 1999)". Proceedings of the British Academy. 111: 297–317.
  2. 1 2 3 4 5 Sperber, D.; Hirschfeld, L. (1999). Culture, Cognition, and Evolution. Cambridge, Mass.: In Robert Wilson & Frank Keil (eds) MIT Encyclopedia of the Cognitive Sciences. pp. cxi–cxxxii.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Meltzoff, A.; Keith Moore, M. (1994). "Imitation,Memory, and the Representation of Person". Infant Behavior and Development. 17 (1): 83–99. doi:10.1016/0163-6383(94)90024-8. PMC   4137868 . PMID   25147416.
  4. Morton, J.; Johnson, M.H. (1991). "CONSPEC and CONLERN: a two-process theory of infant face recognition". Psychological Review. 2. 98 (2): 164–81. doi:10.1037/0033-295X.98.2.164. PMID   2047512.
  5. 1 2 3 4 Sperber, D. (2000). An Objection to the Memetic Approach to Culture. Oxford: in Robert Aunger ed. Darwinizing Culture: The Status of Memetics as a Science.[ permanent dead link ]
  6. 1 2 3 Bermúdez, José Luis (2010). Cognitive science: An introduction to the science of the mind. Cambridge Univ Press.
  7. 1 2 Carey, S. (2009). The Origin of Concepts. USA: Oxford University Press.
  8. Cosmides, L.; Tooby, J. (1992). In J. Barkow, L. Cosmides, and J. Tooby, eds., The Adapted Mind. Oxford: Oxford University Press. pp. 163–228.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. (2000). Principles of Neural Science . New York: McGraw-Hill. ISBN   9780838577011.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford University Press.
  11. Dawkins, R. (1982). The Extended Phenotype. Oxford: Oxford University Press.