Extracellular RNA

Last updated

Extracellular RNA (exRNA) describes RNA species present outside of the cells in which they were transcribed. Carried within extracellular vesicles, lipoproteins, and protein complexes, exRNAs are protected from ubiquitous RNA-degrading enzymes. exRNAs may be found in the environment or, in multicellular organisms, within the tissues or biological fluids such as venous blood, saliva, breast milk, urine, semen, menstrual blood, and vaginal fluid. [1] [2] [3] [4] [5] [6] Although their biological function is not fully understood, exRNAs have been proposed to play a role in a variety of biological processes including syntrophy, intercellular communication, and cell regulation. [7] [8] The United States National Institutes of Health (NIH) published in 2012 a set of Requests for Applications (RFAs) for investigating extracellular RNA biology. [9] Funded by the NIH Common Fund, the resulting program was collectively known as the Extracellular RNA Communication Consortium (ERCC). The ERCC was renewed for a second phase in 2019. [10] [11]

Contents

Background

A cartoon representation of the environments in which extracellular RNAs have been discovered. ExRNA cartoon.jpg
A cartoon representation of the environments in which extracellular RNAs have been discovered.

Both prokaryotic and eukaryotic cells are known to release RNA, and this release can be passive or active. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery was previously considered as a possible mechanism for RNA secretion from the cell, but more recently research studying microRNA secretion in human embryonic kidney cells and Cercopithecus aethiops kidney cells identified neutral sphingomyelinase 2 (nSMase2), an enzyme involved in ceramide biosynthesis, as a regulator of microRNA secretion levels. [7] [8] ExRNAs are often found packaged within vesicles such as exosomes, ectosomes, prostasomes, microvesicles, and apoptotic bodies. [12] [13] [14] [15] Although RNAs can be excreted from the cell without an enveloping container, ribonucleases present in extracellular environments would eventually degrade the molecule.

Types

Extracellular RNA should not be viewed as a category describing a set of RNAs with a specific biological function or belonging to a particular RNA family. Similar to the term "non-coding RNA", "extracellular RNA" defines a group of several types of RNAs whose functions are diverse, yet they share a common attribute which, in the case of exRNAs, is existence in an extracellular environment. The following types of RNA have been found outside the cell:

Though prevalent inside of the cell, ribosomal RNA (rRNA) does not seem to be a common exRNA. Efforts by Valadi et al. to characterize exosomal RNA using the Agilent Bioanalyzer technology showed little to no trace of 18S and 28S rRNA in exosomes secreted by MC/9 murine mast cells, [16] and similar conclusions were made by Skog et al. for rRNA in gliobastoma microvesicles. [17]

Function

To function or even survive as full-length RNA in extracellular environments, exRNA must be protected from digestion by RNases. This requirement does not apply to prokaryotic syntrophy, where digested nucleotides are recycled. [7] exRNA can be shielded from RNases by RNA binding proteins (RBPs), on their own or within/associated with lipoprotein particles and extracellular vesicles. Extracellular vesicles in particular are thought to be a way to transport RNA between cells, in a process that may be general or highly specific, for example, due to incorporation of markers of the parent cell that may be recognized by receptors on the recipient cell. Biochemical evidence supports the idea that exRNA uptake is a common process, suggesting new pathways for intercellular communication. As a result, the presence, absence, and relative abundance of certain exRNAs can be correlated with changes in cellular signaling and may indicate specific disease states. [18]

Despite a limited understanding of exRNA biology, current research has shown the role of exRNAs to be multi-faceted. [18] [19] [20] [21] [22] Extracellular miRNAs are capable of targeting mRNAs in the recipient cell through RNA interference pathways. [8] [23] In vitro experiments have shown the transfer of specific exRNAs into recipient cells inhibiting protein expression and preventing cancer cell growth. [24] In addition to mRNAs being regulated by exRNAs, mRNAs can act as exRNAs to carry genetic information between cells. Messenger RNA contained in microvesicles secreted from glioblastomal cells were shown to generate a functional protein in recipient (human brain microvascular endothelial) cells in vitro. In another study of extracellular mRNAs, mRNAs transported by microvesicles from endothelial progenitor cells (EPCs) to human microvascular and macrovascular endothelial cells triggered angiogenesis in both the in vitro and in vivo setting. [12] [25] Work by Hunter et al. used Ingenuity Pathway Analysis (IPA) software that associated exRNAs found in human blood microvesicles with pathways involved in blood cell differentiation, metabolism, and immune function. [26] These experimental and bioinformatics analyses favor the hypothesis that exRNAs play a role in numerous biological processes.

Detection

Several methods have been developed or adapted to detect, characterize, and quantify exRNA from biological samples. RT-PCR, cDNA microarrays, and RNA sequencing are common techniques for RNA analysis. Applying these methods to study exRNAs mainly differs from cellular RNA experiments in the RNA isolation and/or extraction steps.

RT-PCR

For known exRNA nucleotide sequences, RT-PCR can be applied to detect their presence within a sample as well as quantify their abundance. This is done through first reverse transcribing the RNA sequence into cDNA. The cDNA then serves as a template for PCR amplification. The major benefits of using RT-PCR are its quantitative accuracy in a dynamic range and increased sensitivity compared to methods such as RNase protection assays and dot blot hybridization. The disadvantage to RT-PCR is the requirement of costly supplies, and the necessity of sound experimental design and an in-depth understanding of normalization techniques in order to obtain accurate results and conclusions. [27]

Microfluidics

Microfluidic platforms such as the Agilent Bioanalyzer are useful in assessing the quality of exRNA samples. With the Agilent Bioanalyzer, a lab-on-chip technology that uses a sample of isolated RNA measures the length and quantity of RNA in the sample, and the results of the experiment can be represented as a digital electrophoresis gel image or an electropherogram. Because a diverse range of RNAs can be detected by this technology, it is an effective method for more generally determining what types of RNAs are present in exRNAs samples through using size characterization.[ citation needed ]

cDNA microarrays

Microarrays allow for larger-scale exRNA characterization and quantification. Microarrays used for RNA studies first generate different cDNA oligonucleotides (probes) that are attached to the microarray chip. An RNA sample can then be added to the chip, and RNAs with sequence complementarity to the cDNA probe will bind and generate a fluorescent signal that can be quantified. Micro RNA arrays have been used in exRNA studies to generate miRNA profiles of bodily fluids. [18] [28]

RNA sequencing

The advent of massively parallel sequencing (next-generation sequencing) lead to variations in DNA sequencing that allowed for high-throughput analyses of many genomic properties. Among these DNA sequencing-derived methods is RNA sequencing. The main advantage of RNA sequencing over other methods for exRNA detection and quantification is its high-throughput capabilities. Unlike microarrays, RNA sequencing is not constrained by factors such as oligonucleotide generation, and the number of probes that can be added to a chip. Indirect RNA sequencing of exRNA samples involves generating a cDNA library from the exRNAs followed by PCR amplification and sequencing. In 2009, Helicos Biosciences published a method for directly sequencing RNA molecules called Direct RNA sequencing (DRS™). [29] Regardless of the RNA sequencing platform, inherent biases exist at various steps in the experiment, but methods have been proposed to correct for these biases with promising results. [30] [31]

Clinical significance

As growing evidence supports the function of exRNAs as intercellular communicators, research efforts are investigating the possibility of utilizing exRNAs in disease diagnosis, prognosis, and therapeutics. [1] [32]

Biomarkers

The potential of extracellular RNAs to serve as biomarkers is significant not only because of their role in intercellular signaling but also due to developments in next generation sequencing that enable high throughput profiling. [33] [34] The simplest form of an exRNA biomarker is the presence (or absence) of a specific extracellular RNA. These biological signatures have been discovered in exRNA studies of cancer, diabetes, arthritis, and prion-related diseases. [1] [18] [35] Recently, a bioinformatics analysis of extracellular vesicles extracted from Trypanosoma cruzi, in which SNPs were mined from transcriptomic data, [36] suggested that exRNAs could be biomarkers of neglected diseases such as Chagas disease.

Cancer

A major research area of interest for exRNA has been its role in cancer. The table below (adapted from Kosaka et al. [23] ) lists several types of cancer in which exRNAs have been shown to be associated:

TypeExRNA Biomarker Candidate
Diffuse large B-cell lymphoma (DLBCL)Expression levels of miR-155, miR-210 and miR-21 were higher in DLBCL patient sera compared to control sera; High miR-21 expression was associated with relapse-free survival
Prostate cancerSerum levels of miR-141 can distinguish patients with prostate cancer from healthy controls
Ovarian cancerThe levels of the 8 specific miRNAs were similar between cellular and exosomal miRNAs. Exosomal miRNA from ovarian cancer patients exhibited similar profiles, which were significantly distinct from profiles observed in benign disease; miR-21, miR-92, miR-93, miR-126 and miR-29a were significantly overexpressed in

the serum from cancer patients compared to controls

Non small cell lung cancerEleven serum miRNAs were found to be altered more than 5-fold between longer-survival and shorter-survival groups, and levels of four miRNAs were significantly associated with overall survival
Acute myeloid leukemia and acute lymphoblastic leukemiamiR-92a decreased in the plasmas of acute leukemia patients
Breast cancerIncreased miR-195 levels in patients were reflected in tumors, and circulating levels of miR-195 and let-7a decreased in cancer patients postoperatively, to levels comparable with control subjects; miR-155 was differentially expressed in the serum of women with hormone-sensitive compared to women with hormone-insensitive

breast cancer

Gastric cancerThe plasma concentrations of miR-17-5p, miR-21, miR-106a, and miR-106b were significantly higher in patients than controls,whereas let-7a was lower in patients
Pancreatic cancerCirculating miR-210 levels are elevated in pancreatic cancer patients
Pancreatic ductal adenocarcinomaThe combined analyses of four miRNAs (miR-21, miR-210, miR-155, and miR-196a) in plasma can discriminate patients from normal healthy individuals
Squamous cell carcinoma (SCC) of tonguePlasma miR-184 levels were significantly higher in tongue SCC patients in comparison with normal individuals, and the levels were significantly reduced after surgical removal of the primary tumors
Colorectal cancerBoth miR-17-3p and miR-92 were significantly elevated in the patients, and the plasma levels of these miRNAs were reduced after surgery
Hepatocellular carcinoma (HCC)An increased amount of miR-500 was found in the sera of the HCC patients, and its levels in sera returned to normal after the surgical treatment

See also

Related Research Articles

<span class="mw-page-title-main">Complementary DNA</span> DNA reverse transcribed from RNA

In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed from an RNA. cDNA exists in both single-stranded and double-stranded forms and in both natural and engineered forms.

<span class="mw-page-title-main">Vesicle (biology and chemistry)</span> Any small, fluid-filled, spherical organelle enclosed by a membrane

In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

Small RNA (sRNA) are polymeric RNA molecules that are less than 200 nucleotides in length, and are usually non-coding. RNA silencing is often a function of these molecules, with the most common and well-studied example being RNA interference (RNAi), in which endogenously expressed microRNA (miRNA) or exogenously derived small interfering RNA (siRNA) induces the degradation of complementary messenger RNA. Other classes of small RNA have been identified, including piwi-interacting RNA (piRNA) and its subspecies repeat associated small interfering RNA (rasiRNA). Small RNA "is unable to induce RNAi alone, and to accomplish the task it must form the core of the RNA–protein complex termed the RNA-induced silencing complex (RISC), specifically with Argonaute protein".

<span class="mw-page-title-main">Exosome (vesicle)</span> Membrane-bound extracellular vesicles

Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartment of most eukaryotic cells. In multicellular organisms, exosomes and other EVs are found in biological fluids including saliva, blood, urine and cerebrospinal fluid. EVs have specialized functions in physiological processes, from coagulation and waste management to intercellular communication.

mir-92 microRNA precursor family

The miR-92 microRNAs are short single stranded non-protein coding RNA fragments initially discovered incorporated into an RNP complex with a proposed role of processing RNA molecules and further RNP assembly. Mir-92 has been mapped to the human genome as part of a larger cluster at chromosome 13q31.3, where it is 22 nucleotides in length but exists in the genome as part of a longer precursor sequence. There is an exact replica of the mir-92 precursor on the X chromosome. MicroRNAs are endogenous triggers of the RNAi pathway which involves several ribonucleic proteins (RNPs) dedicated to repressing mRNA molecules via translation inhibition and/or induction of mRNA cleavage. miRNAs are themselves matured from their long RNA precursors by ribonucleic proteins as part of a 2 step biogenesis mechanism involving RNA polymerase 2.

<span class="mw-page-title-main">Adrenal tumor</span> Medical condition

An adrenal tumor or adrenal mass is any benign or malignant neoplasms of the adrenal gland, several of which are notable for their tendency to overproduce endocrine hormones. Adrenal cancer is the presence of malignant adrenal tumors, and includes neuroblastoma, adrenocortical carcinoma and some adrenal pheochromocytomas. Most adrenal pheochromocytomas and all adrenocortical adenomas are benign tumors, which do not metastasize or invade nearby tissues, but may cause significant health problems by unbalancing hormones.

<span class="mw-page-title-main">Microvesicle</span> Type of extracellular vesicle

Microvesicles are a type of extracellular vesicle (EV) that are released from the cell membrane. In multicellular organisms, microvesicles and other EVs are found both in tissues and in many types of body fluids. Delimited by a phospholipid bilayer, microvesicles can be as small as the smallest EVs or as large as 1000 nm. They are considered to be larger, on average, than intracellularly-generated EVs known as exosomes. Microvesicles play a role in intercellular communication and can transport molecules such as mRNA, miRNA, and proteins between cells.

ExoCarta is a manually curated database of exosomal proteins, RNA and lipids.

An oncomir is a microRNA (miRNA) that is associated with cancer. MicroRNAs are short RNA molecules about 22 nucleotides in length. Essentially, miRNAs specifically target certain messenger RNAs (mRNAs) to prevent them from coding for a specific protein. The dysregulation of certain microRNAs (oncomirs) has been associated with specific cancer forming (oncogenic) events. Many different oncomirs have been identified in numerous types of human cancers.

Jan Lötvall is a Swedish clinical allergist and scientist working on translational research primarily in the field of asthma. He is the former director of the Krefting Research Centre at the University of Gothenburg and is the Chief Scientific Officer of ExoCoBio.

miR-146 Family of microRNA precursors

miR-146 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

MicroRNA sequencing (miRNA-seq), a type of RNA-Seq, is the use of next-generation sequencing or massively parallel high-throughput DNA sequencing to sequence microRNAs, also called miRNAs. miRNA-seq differs from other forms of RNA-seq in that input material is often enriched for small RNAs. miRNA-seq allows researchers to examine tissue-specific expression patterns, disease associations, and isoforms of miRNAs, and to discover previously uncharacterized miRNAs. Evidence that dysregulated miRNAs play a role in diseases such as cancer has positioned miRNA-seq to potentially become an important tool in the future for diagnostics and prognostics as costs continue to decrease. Like other miRNA profiling technologies, miRNA-Seq has both advantages and disadvantages.

In molecular biology mir-885 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

The International Society for Extracellular Vesicles (ISEV) is an international scientific organization that focuses on the study of extracellular vesicles (EV), including exosomes, microvesicles, oncosomes, and other membrane-bound particles that are released from cells. Established in 2011, the society is a nonprofit organization. It is governed by an executive committee. The current president is Buzás Edit. Previous presidents were Clotilde Théry (2018-2022), Andrew Hill (2016-2018) and founding president Jan Lötvall (2011-2016). The society publishes the Journal of Extracellular Vesicles and the Journal of Extracellular Biology.

Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from almost all types of cells but, unlike a cell, cannot replicate. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. They carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles from the parent cell. EVs carry distinct proteo-transcriptomic signatures that are different from their cancer cell of origin. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.

Circulating free DNA (cfDNA) (also known as cell-free DNA) are degraded DNA fragments released to body fluids such as blood plasma, urine, cerebrospinal fluid, etc. Typical sizes of cfDNA fragments reflect chromatosome particles (~165bp), as well as multiples of nucleosomes, which protect DNA from digestion by apoptotic nucleases. The term cfDNA can be used to describe various forms of DNA freely circulating in body fluids, including circulating tumor DNA (ctDNA), cell-free mitochondrial DNA (ccf mtDNA), cell-free fetal DNA (cffDNA) and donor-derived cell-free DNA (dd-cfDNA). Elevated levels of cfDNA are observed in cancer, especially in advanced disease. There is evidence that cfDNA becomes increasingly frequent in circulation with the onset of age. cfDNA has been shown to be a useful biomarker for a multitude of ailments other than cancer and fetal medicine. This includes but is not limited to trauma, sepsis, aseptic inflammation, myocardial infarction, stroke, transplantation, diabetes, and sickle cell disease. cfDNA is mostly a double-stranded extracellular molecule of DNA, consisting of small fragments (50 to 200 bp) and larger fragments (21 kb) and has been recognized as an accurate marker for the diagnosis of prostate cancer and breast cancer.

Prognostic markers are biomarkers used to measure the progress of a disease in the patient sample. Prognostic markers are useful to stratify the patients into groups, guiding towards precise medicine discovery. The widely used prognostic markers in cancers include stage, size, grade, node and metastasis. In addition to these common markers, there are prognostic markers specific to different cancer types. For example estrogen level, progesterone and HER2 are markers specific to breast cancer patients. There is evidence showing that genes behaving as tumor suppressors or carcinogens could act as prognostic markers due to altered gene expression or mutation. Besides genetic biomarkers, there are also biomarkers that are detected in plasma or body fluid which can be metabolic or protein biomarkers.

The stem cell secretome is a collective term for the paracrine soluble factors produced by stem cells and utilized for their inter-cell communication. In addition to inter-cell communication, the paracrine factors are also responsible for tissue development, homeostasis and (re-)generation. The stem cell secretome consists of extracellular vesicles, specifically exosomes, microvesicles, membrane particles, peptides and small proteins (cytokines). The paracrine activity of stem cells, i.e. the stem cell secretome, has been found to be the predominant mechanism by which stem cell-based therapies mediate their effects in degenerative, auto-immune and/or inflammatory diseases. Though not only stem cells possess a secretome which influences their cellular environment, their secretome currently appears to be the most relevant for therapeutic use.

<span class="mw-page-title-main">Kenneth Witwer</span> American biologist

Kenneth W. Witwer is an associate professor of molecular and comparative pathobiology and neurology at the Johns Hopkins University School of Medicine in Baltimore, Maryland, United States. As nominated President-Elect of the International Society for Extracellular Vesicles (ISEV), Witwer previously served as Secretary General and Executive Chair of Science and Meetings of the society. His laboratory studies extracellular vesicles (EVs), noncoding and extracellular RNA (exRNA), and enveloped viruses, including HIV and SARS-CoV-2. Witwer is a member of the Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, has advised the US Environmental Protection Agency and the US National Institutes of Health, and is an associate editor of the Journal of Extracellular Vesicles.

Exosomes are small vesicles secreted by cells that play a crucial role in intercellular communication. They contain a variety of biomolecules, including proteins, nucleic acids and lipids, which can be transferred between cells to modulate cellular processes. Exosomes have been increasingly acknowledged as promising therapeutic tool and delivery platforms due to unique biological properties.

  1. Biocompatibility: Exosomes are naturally occurring particles in body, which makes them highly biocompatible and less likely to activate immune response.
  2. Targeting ability: Exosomes are assembled to express specific proteins or peptides, allowing them to target specific cells or tissues.
  3. Natural cargo carries: Exosomes can naturally transport a variety of biomolecules, including proteins, RNA and DNA, which can be used for therapeutic purposes.

References

  1. 1 2 3 Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (October 2008). "Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases". Cell Research. 18 (10): 997–1006. doi: 10.1038/cr.2008.282 . PMID   18766170.
  2. Michael, A; Bajracharya, SD; Yuen, PS; Zhou, H; Star, RA; Illei, GG; Alevizos, I (January 2010). "Exosomes from human saliva as a source of microRNA biomarkers". Oral Diseases. 16 (1): 34–8. doi:10.1111/j.1601-0825.2009.01604.x. PMC   2844919 . PMID   19627513.
  3. Kosaka, N; Izumi, H; Sekine, K; Ochiya, T (March 1, 2010). "microRNA as a new immune-regulatory agent in breast milk". Silence. 1 (1): 7. doi: 10.1186/1758-907X-1-7 . PMC   2847997 . PMID   20226005.
  4. Menke, TB; Warnecke, JM (June 2004). "Improved conditions for isolation and quantification of RNA in urine specimens". Annals of the New York Academy of Sciences. 1022 (1): 185–9. Bibcode:2004NYASA1022..185M. doi:10.1196/annals.1318.028. PMID   15251958. S2CID   25965962.
  5. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M (May 2010). "MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation". International Journal of Legal Medicine. 124 (3): 217–26. doi:10.1007/s00414-009-0402-3. PMC   2855015 . PMID   20145944.
  6. Hanson, EK; Lubenow, H; Ballantyne, J (April 15, 2009). "Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs". Analytical Biochemistry. 387 (2): 303–14. doi:10.1016/j.ab.2009.01.037. PMID   19454234.
  7. 1 2 3 Demain, AL; Burg, RW; Hendlin, D (March 1965). "Excretion and Degradation of Ribonucleic Acid by Bacillus Subtilis". Journal of Bacteriology. 89 (3): 640–6. doi:10.1128/JB.89.3.640-646.1965. PMC   277514 . PMID   14273638.
  8. 1 2 3 Iguchi, H; Kosaka, N; Ochiya, T (September 2010). "Secretory microRNAs as a versatile communication tool". Communicative & Integrative Biology. 3 (5): 478–81. doi:10.4161/cib.3.5.12693. PMC   2974086 . PMID   21057646.
  9. NIH, USA. "NIH Common Fund RFA for exRNA Communication" . Retrieved 7 November 2012.
  10. NIH, USA. "ERCC2 Projects" . Retrieved 26 September 2019.
  11. Tucker, Ayanna (19 August 2019). "Research on Cellular 'Packages' Receives $900k in Federal Funding". Newsroom. Johns Hopkins Medicine. Retrieved 26 September 2019.
  12. 1 2 Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (October 1, 2007). "Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA". Blood. 110 (7): 2440–8. doi: 10.1182/blood-2007-03-078709 . PMID   17536014.
  13. Wolfers, J; Lozier, A; Raposo, G; Regnault, A; Théry, C; Masurier, C; Flament, C; Pouzieux, S; Faure, F; Tursz, T; Angevin, E; Amigorena, S; Zitvogel, L (March 2001). "Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming". Nature Medicine. 7 (3): 297–303. doi:10.1038/85438. PMID   11231627. S2CID   24091247.
  14. Babiker, AA; Nilsson, B; Ronquist, G; Carlsson, L; Ekdahl, KN (February 1, 2005). "Transfer of functional prostasomal CD59 of metastatic prostatic cancer cell origin protects cells against complement attack". The Prostate. 62 (2): 105–14. doi:10.1002/pros.20102. PMID   15389819. S2CID   21127892.
  15. Holmgren, L; Szeles, A; Rajnavölgyi, E; Folkman, J; Klein, G; Ernberg, I; Falk, KI (June 1, 1999). "Horizontal transfer of DNA by the uptake of apoptotic bodies". Blood. 93 (11): 3956–63. doi:10.1182/blood.V93.11.3956. PMID   10339505.
  16. Valadi, H; Ekström, K; Bossios, A; Sjöstrand, M; Lee, JJ; Lötvall, JO (June 2007). "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells". Nature Cell Biology. 9 (6): 654–9. doi:10.1038/ncb1596. PMID   17486113. S2CID   8599814.
  17. Noerholm, M; Balaj, L; Limperg, T; Salehi, A; Zhu, LD; Hochberg, FH; Breakefield, XO; Carter, BS; Skog, J (Jan 17, 2012). "RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls". BMC Cancer. 12: 22. doi: 10.1186/1471-2407-12-22 . PMC   3329625 . PMID   22251860.
  18. 1 2 3 4 Bellingham, SA; Coleman, BM; Hill, AF (November 2012). "Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells". Nucleic Acids Research. 40 (21): 10937–49. doi:10.1093/nar/gks832. PMC   3505968 . PMID   22965126.
  19. Iguchi, H; Kosaka, N; Ochiya, T (June 2010). "Versatile applications of microRNA in anti-cancer drug discovery: from therapeutics to biomarkers". Current Drug Discovery Technologies. 7 (2): 95–105. doi:10.2174/157016310793180648. PMID   20836759.
  20. Bellingham, SA; Guo, BB; Coleman, BM; Hill, AF (2012). "Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?". Frontiers in Physiology. 3: 124. doi: 10.3389/fphys.2012.00124 . PMC   3342525 . PMID   22563321.
  21. Coleman, BM; Hanssen, E; Lawson, VA; Hill, AF (October 2012). "Prion-infected cells regulate the release of exosomes with distinct ultrastructural features". FASEB Journal. 26 (10): 4160–73. doi: 10.1096/fj.11-202077 . PMID   22767229. S2CID   364768.
  22. Hessvik, NP; Phuyal, S; Brech, A; Sandvig, K; Llorente, A (November 2012). "Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1819 (11–12): 1154–63. doi:10.1016/j.bbagrm.2012.08.016. PMID   22982408.
  23. 1 2 Kosaka, N; Iguchi, H; Ochiya, T (October 2010). "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis". Cancer Science. 101 (10): 2087–92. doi: 10.1111/j.1349-7006.2010.01650.x . PMID   20624164.
  24. Kosaka, N; Iguchi, H; Yoshioka, Y; Takeshita, F; Matsuki, Y; Ochiya, T (June 4, 2010). "Secretory mechanisms and intercellular transfer of microRNAs in living cells". The Journal of Biological Chemistry. 285 (23): 17442–52. doi: 10.1074/jbc.M110.107821 . PMC   2878508 . PMID   20353945.
  25. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (December 2008). "Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers". Nature Cell Biology. 10 (12): 1470–6. doi:10.1038/ncb1800. PMC   3423894 . PMID   19011622.
  26. Hunter, MP; Ismail, N; Zhang, X; Aguda, BD; Lee, EJ; Yu, L; Xiao, T; Schafer, J; Lee, ML; Schmittgen, TD; Nana-Sinkam, SP; Jarjoura, D; Marsh, CB (2008). "Detection of microRNA expression in human peripheral blood microvesicles". PLOS ONE. 3 (11): e3694. Bibcode:2008PLoSO...3.3694H. doi: 10.1371/journal.pone.0003694 . PMC   2577891 . PMID   19002258.
  27. Wong, ML; Medrano, JF (July 2005). "Real-time PCR for mRNA quantitation". BioTechniques. 39 (1): 75–85. doi: 10.2144/05391rv01 . PMID   16060372.
  28. Turchinovich, A; Weiz, L; Langheinz, A; Burwinkel, B (September 1, 2011). "Characterization of extracellular circulating microRNA". Nucleic Acids Research. 39 (16): 7223–33. doi:10.1093/nar/gkr254. PMC   3167594 . PMID   21609964.
  29. Ozsolak, F; Platt, AR; Jones, DR; Reifenberger, JG; Sass, LE; McInerney, P; Thompson, JF; Bowers, J; Jarosz, M; Milos, PM (October 8, 2009). "Direct RNA sequencing". Nature. 461 (7265): 814–8. Bibcode:2009Natur.461..814O. doi:10.1038/nature08390. PMID   19776739. S2CID   4426760.
  30. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Schaëffer B, Le Crom S, Guedj M, Jaffrézic F (September 17, 2012). "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis". Briefings in Bioinformatics. 14 (6): 671–683. doi: 10.1093/bib/bbs046 . PMID   22988256.
  31. Wang, Z; Gerstein, M; Snyder, M (January 2009). "RNA-Seq: a revolutionary tool for transcriptomics". Nature Reviews Genetics. 10 (1): 57–63. doi:10.1038/nrg2484. PMC   2949280 . PMID   19015660.
  32. Thind A, Wilson C (2016). "Exosomal miRNAs as cancer biomarkers and therapeutic targets". J Extracell Vesicles. 5: 31292. doi:10.3402/jev.v5.31292. PMC   4954869 . PMID   27440105.
  33. Cloonan, N; Xu, Q; Faulkner, GJ; Taylor, DF; Tang, DT; Kolle, G; Grimmond, SM (October 1, 2009). "RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data". Bioinformatics. 25 (19): 2615–6. doi:10.1093/bioinformatics/btp459. PMC   2752615 . PMID   19648138.
  34. Majewski, J; Pastinen, T (February 2011). "The study of eQTL variations by RNA-seq: from SNPs to phenotypes". Trends in Genetics. 27 (2): 72–9. doi:10.1016/j.tig.2010.10.006. PMID   21122937.
  35. Murata, K; Yoshitomi, H; Tanida, S; Ishikawa, M; Nishitani, K; Ito, H; Nakamura, T (2010). "Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis". Arthritis Research & Therapy . 12 (3): R86. doi: 10.1186/ar3013 . PMC   2911870 . PMID   20470394.
  36. Gaur, Pallavi; Chaturvedi, Anoop (2016-11-24). "Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease". PeerJ. 4:e2693: e2693. doi: 10.7717/peerj.2693 . PMC   5126619 . PMID   27904804.{{cite journal}}: External link in |ref= (help)