This article needs additional citations for verification .(March 2021) |
Factitious airs was a term used for synthetic gases which emerged around 1670 when Robert Boyle coined the term upon isolating what is now understood to be hydrogen. [1] Factitious means "artificial, not natural", [2] so the term means "man-made gases".
Robert Boyle coined the term Factitious Air upon isolating hydrogen in 1670. [1] Henry Cavendish (1731–1810) used the term "factitious air" to refer to "any kind of air which is contained in other bodies in an unelastic state, and is produced from thence by art". [3]
An archaic definition from 1747 for the production of factitious air was defined as being caused by: "1- by flow Degrees from Putrefactions and Fermentations of all Kinds; or 2- more expeditiously by some Sorts of chymical Dissolutions of Bodies; or 3- and lastly, almost instantaneously by the Explosion of Gunpowder, and the Mixture or some Kinds of Bodies. Thus, if Paste or Dough with Leaven be placed in an exhausted Receiver, it will, after some Time, by Fermentation, produce a considerable quantity of Air, which will appear very plainly by the Sinking the Quicksilver in the Gage. Thus also any Animal or Vegetable Substance, putrifying in Vacuo, will produce the same Effect." [4]
There are significant inconsistencies in the archaic nomenclature due to the limited knowledge of chemistry and primitive analytical technology of the era (i.e. based on the chemistry, it is clear the terms were mistakenly assigned to more than one gas by different investigators). Furthermore, in most cases the gases were not pure.
Names used for factitious airs may have included:[ citation needed ]
Source: [8]
Fixed air, or fixible air, is an ancient term for carbon dioxide [9]
Joseph Priestley credited Joseph Black for discovering and coining "fixed air", which was thought to exist in a fixed state in alkaline salts, chalk, and other calcareous substances. Black considered substances containing fixed air to be "mild", and upon expulsion of the gas by heating the resulting state is "caustic" by corroding or burning plants and animals (e.g. CO2 released by chalk upon decomposition to calcium oxide). In other words, the fixed air (also known as fixible air) was thought to be fixated within a corrosive molecule.
Priestley likewise credited the discovery of fixed air to contributions from several scientists including: David Macbride, John Pringle, William Brownrigg (regarded carbonated water to have an acidulous taste), Stephen Hales, and many others. [10] [11] [12]
Henry Cavendish provided a definition: "By fixed air, I mean that particular species of factitious air, which is separated from alkaline substances by solution in acids or by calcination". [3] Cavendish essentially defined potassium oxide or calcium oxide as a base, which can contain a fixated air within its composition, setting the stage for the historical definition of carbonate.
According to Claude Louis Berthollet, "What has long been called fixed, or fixible air, being really an acid in the state of gas, has of late received several new denominations. It has been called aerial acid, as existing very readily in the state of air, or more properly of gas, and plentifully in the atmosphere. The chalky acid, as procurable in large quantities from chalk, or other mild calcareous substances. The name given to it in this essay is derived from the knowledge of its composition, as lately ascertained by the French Chemists to consist of the elementary part of charcoal, named charbone, or char, united with oxygen, or the acidifying principle. Hence it is called, with strict propriety, carbonic acid in general; carbonic acid gas when in the aerial form; and carbonic acid liquor when combined with or dissolved in water." [14]
By French Chemists, Berthollet is generally referring to Lavoisier's oxidation discoveries. [15] The name oxygen is derived from Greek with oxy meaning acid, and gene to mean forming/expression, therefore carbonic acid is simply the union of carbon with oxygen (Laviosier's original degrees of oxidation could not fit the concept of carbon monoxide as it was based on diamond, graphite, coal and carbonic acid [15] )
Carbonate was defined as "a compound formed by the union of carbonic acid with an earth, alkali, or metallic oxide [...] they are distinguished by the property of effervescing on the addition of an acid" [7] The definition expands upon fixed air being fixated within carbonate to suggest carbonic acid is a constituent of carbonate, therefore in the ancient language the suffix "-ic acid" and "-ate" were not interchangeable.
The modern definition is similar, although equipped with the molecular knowledge of carbonate's structure and reassignment of the meaning of carbonic acid from CO2 to the H2CO3 molecule, "Carbonates are the salts of carbonic acids. They form when a positively charged metal ion comes into contact with the oxygen atoms of the carbonate ion." [16]
Bicarbonate, originally known as bi-carbonate of potash, was coined by William Hyde Wollaston in 1814 based on hydrocarbonate's potential to release two molar equivalents of carbon dioxide (referred to as carbonic acid at the time) as released by both potassium hydrocarbonate (initially known as carbonate of potash, suggested to become bicarbonate) and potassium carbonate (vaguely known as subcarbonate, suggested to become carbonate) upon formation of potash (potassium oxide [17] ). [13]
Bicarbonates have historically been defined as, "combinations of the bases with the carbonic acid, in which two atoms of the latter are united to one of the former" [7] In other words, potash (potassium oxide) was well-understood to be a caustic base and essentially the core molecule that subsequent chemical nomenclature was built upon. Carbonate of potash (potassium carbonate) must contain a carbonic acid species fixated within potash's alternative composition (see fixed air above). Since "bi-carbonate of potash" liberates a double dose of carbonic acid, to distinguish between the similar substances, the prefix bi- indicates the bi-carbonate of potash (potassium hydrocarbonate) contains twice as much CO2 fixated in this form potash's composition relative to the carbonate of potash. The same ancient logic (prior to the understanding of molecular formulas and reaction stoichiometry) applied to soda, carbonate of soda, and bicarbonate of soda.
The word saleratus, from Latin sal æratus (meaning "aerated salt"), was widely used beginning in the 1840s. [18] [19]
Carbonic acid gas was an ancient term to specify the gaseous state of carbonic acid (synonymous with carbonic acid). It is listed as an alternative name for carbon dioxide in PubChem. [20] In 1796 externally applied carbonic acid gas to the epidermis was reported to treat breast cancer; and inhalation treated tuberculosis and other indications. [21]
Hydrogen was initially thought to be toxic based on experiments by Lavoisier, however, the purity of the hydrogen was taken into question when later experiments discovered hydrogen to effectively treat measles in the 1790s. [21]
Blood has been understood to absorb and deliver oxygen since the mid-1790s. [21]
The study of these airs interfaced with phlogiston theory.
The therapeutic potential of factitious airs were widely investigated with significant contributions by Thomas Beddoes, James Watt, James Lind, Humphry Davy, and others at the Pneumatic Institution. [44] [25] [45] Georgiana Cavendish, Duchess of Devonshire (related to Henry through marriage) had a profound interest in chemistry with interest in Henry's research in pneumatic chemistry. [46] She played a pivotal role in advancing the study of factitious airs through partnering with Thomas Beddoes to establish the Pneumatic Institution. [46]
Tuberculosis was a primary disease physicians had attempted to treat with factitious airs, particularly since James Watt's daughter died of the disease. [46] John Carmichael had reported successfully treating a patient suffering from tuberculosis using hydrocarbonate. [47] [25] This application of factitious air was pioneering research relevant to the modern era as carbon monoxide currently has preclinical evidence of treating Mycobacterium tuberculosis infection progression by inducing dormancy, stimulating host immune response, and ameliorating host inflammation. [48]
In inorganic chemistry, bicarbonate is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula HCO−
3.
Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.
Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.
In chemistry, the law of multiple proportions states that in compounds which contain two particular chemical elements, the amount of Element A per measure of Element B will differ across these compounds by ratios of small whole numbers. For instance, the ratio of the hydrogen content in methane (CH4) and ethane (C2H6) per measure of carbon is 4:3. This law is also known as Dalton's Law, named after John Dalton, the chemist who first expressed it. The discovery of this pattern led Dalton to develop the modern theory of atoms, as it suggested that the elements combine with each other in multiples of a basic quantity. Along with the law of definite proportions, the law of multiple proportions forms the basis of stoichiometry.
Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.
An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.
Nitrous oxide, commonly known as laughing gas, nitrous, factitious air, among others, is a chemical compound, an oxide of nitrogen with the formula N
2O. At room temperature, it is a colourless non-flammable gas, and has a slightly sweet scent and taste. At elevated temperatures, nitrous oxide is a powerful oxidiser similar to molecular oxygen.
Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.
Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash.
Carboxyhemoglobin is a stable complex of carbon monoxide and hemoglobin (Hb) that forms in red blood cells upon contact with carbon monoxide. Carboxyhemoglobin is often mistaken for the compound formed by the combination of carbon dioxide (carboxyl) and hemoglobin, which is actually carbaminohemoglobin. Carboxyhemoglobin terminology emerged when carbon monoxide was known by its historic name, "carbonic oxide", and evolved through Germanic and British English etymological influences; the preferred IUPAC nomenclature is carbonylhemoglobin.
Industrial gases are the gaseous materials that are manufactured for use in industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders. The industry producing these gases is also known as industrial gas, which is seen as also encompassing the supply of equipment and technology to produce and use the gases. Their production is a part of the wider chemical Industry.
In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.
Kipp's apparatus, also called a Kipp generator, is an apparatus designed for preparation of small volumes of gases. It was invented around 1844 by the Dutch pharmacist Petrus Jacobus Kipp and widely used in chemical laboratories and for demonstrations in schools into the second half of the 20th century.
Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer [coke] with air and gasifying it with steam". The caloric yield of the fuel produced by this method is about 10% of the yield from a modern syngas plant. The coke needed to produce water gas also costs significantly more than the precursors for syngas, making water gas technology an even less attractive business proposition.
The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.
A monoxide is any oxide containing only one atom of oxygen. A well known monoxide is carbon monoxide; see carbon monoxide poisoning.
In the history of science, pneumatic chemistry is an area of scientific research of the seventeenth, eighteenth, and early nineteenth centuries. Important goals of this work were the understanding of the physical properties of gases and how they relate to chemical reactions and, ultimately, the composition of matter. The rise of phlogiston theory, and its replacement by a new theory after the discovery of oxygen as a gaseous component of the Earth atmosphere and a chemical reagent participating in the combustion reactions, were addressed in the era of pneumatic chemistry.
Rhodizonic acid is a chemical compound with formula H2C6O6 or (CO)4(COH)2. It can be seen as a twofold enol and fourfold ketone of cyclohexene, more precisely 5,6-dihydroxycyclohex-5-ene-1,2,3,4-tetrone.
Chemistry: A Volatile History is a 2010 BBC documentary on the history of chemistry presented by Jim Al-Khalili. It was nominated for the 2010 British Academy Television Awards in the category Specialist Factual.
The Pneumatic Institution was a medical research facility in Bristol, England, in 1799–1802. It was established by physician and science writer Thomas Beddoes to study the medical effects of gases, known as factitious airs, that had recently been discovered. Humphry Davy headed the Institution's laboratory, examining the effects of laughing gas on himself and others, and James Watt designed much of the lab's equipment.