Gasotransmitter

Last updated

Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters. [1] According to in vitro models, gasotransmitters, like other gaseous signaling molecules, may bind to gasoreceptors and trigger signaling in the cells. [1]

Contents

The name gasotransmitter is not intended to suggest a gaseous physical state such as infinitesimally small gas bubbles; the physical state is dissolution in complex body fluids and cytosol. [2] These particular gases share many common features in their production and function but carry on their tasks in unique ways which differ from classical signaling molecules.

Criteria

The terminology and characterization criteria of “gasotransmitter” were first introduced in 2002. [3] For one gas molecule to be categorized as a gasotransmitter, all of the following criteria should be met. [4] [3]

  1. It is a small molecule of gas;
  2. It is freely permeable to membranes. As such, its effects do not rely on the cognate membrane receptors. It can have endocrine, paracrine, and autocrine effects. In their endocrine mode of action, for example, gasotransmitters can enter the blood stream; be carried to remote targets by scavengers and released there, and modulate functions of remote target cells;
  3. It is endogenously and enzymatically generated and its production is regulated;
  4. It has well defined and specific functions at physiologically relevant concentrations. Thus, manipulating the endogenous levels of this gas evokes specific physiological changes;
  5. Functions of this endogenous gas can be mimicked by its exogenously applied counterpart;
  6. Its cellular effects may or may not be mediated by second messengers, but should have specific cellular and molecular targets.

Overview

The current "trinity" of gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, have ironically been discarded as useless toxic gases throughout history. These molecules are a classic example of dose-dependent hormesis such that low-dose is beneficial whereas absence or excessive dosing is toxic. The beneficial effects of these endogenous molecules have inspired significant pharmaceutical drug development efforts for each gas.

The triad of gases have many similar features and participate in shared signaling pathways, although their actions can either be synergistic or as an antagonistic regulator. [5] [6] Nitric oxide and hydrogen sulfide are highly reactive with numerous molecular targets, whereas carbon monoxide is relatively stable and metabolically inert predominately limited to interacting with ferrous ion complexes within mammalian organisms. [7] The scope of biological functions are different across phylogenetic kingdoms, however, exemplified by the important interactions of carbon monoxide with nickel or molybdenum carbon monoxide dehydrogenase enzymes. [8] [9]

Gasotransmitters are under investigation in disciplines such as: biosensing, [10] [11] immunology, [12] [13] neuroscience, [14] [15] gastroenterology, [16] [17] [18] and many other fields to include pharmaceutical development initiatives. [19] [20] [21] While biomedical research has received the most attention, gasotransmitters are under investigation throughout biological kingdoms. [22] [23] [24] [25]

Many analytical tools have been developed to assist in the study of gasotransmitters. [26]

Nitric oxide

The 1998 Nobel Prize in Physiology or Medicine was awarded for the discovery of nitric oxide (NO) as an endogenous signaling molecule. The research emerged in 1980 when NO was first known as the 'endothelium-derived relaxing factor' (EDRF). The identity of EDRF as actually being NO was revealed in 1986 which many consider to mark the beginning of the modern era of gasotransmitter research. [27]

Relative to carbon monoxide and hydrogen sulfide, NO is exceptional due to the fact it is a radical gas. [28] NO is highly reactive (having a lifetime of a few seconds), yet diffuses freely across membranes. These attributes make NO ideal for a transient paracrine (between adjacent cells) and autocrine (within a single cell) signaling molecule.

It is a known bioproduct in almost all types of organisms, ranging from bacteria to plants, fungi, and animal cells. [29] [30] NO is biosynthesized endogenously from L-arginine by various nitric oxide synthase (NOS) enzymes. Reduction of inorganic nitrate may also serve to make NO. Independent of NOS, an alternative pathway coined the nitrate-nitrite-nitric oxide pathway, elevates NO through the sequential reduction of dietary nitrate derived from plant-based foods such as: leafy greens, such as spinach and arugula, and beetroot. [31] [32] [33] For the human body to generate NO through the nitrate-nitrite-nitric oxide pathway, the reduction of nitrate to nitrite occurs in the mouth by the oral microbiome. [34]

The production of NO is elevated in populations living at high altitudes, which helps these people avoid hypoxia by aiding in pulmonary vasculature vasodilation. The endothelium (inner lining) of blood vessels uses NO to signal the surrounding smooth muscle to relax, thus resulting in vasodilation and increasing blood flow. [35] NO contributes to vessel homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Humans with atherosclerosis, diabetes, or hypertension often show impaired NO pathways. [36] In the context of hypertension, the vasodilatory mechanism follows: NO acts through the stimulation of the soluble guanylate cyclase, which is a heterodimeric enzyme with subsequent formation of cyclic-GMP. Cyclic-GMP activates protein kinase G, which causes reuptake of Ca2+ and the opening of calcium-activated potassium channels. The fall in concentration of Ca2+ ensures that the myosin light-chain kinase (MLCK) can no longer phosphorylate the myosin molecule, thereby stopping the crossbridge cycle and leading to relaxation of the smooth muscle cell. [37]

NO is also generated by phagocytes (monocytes, macrophages, and neutrophils) as part of the human immune response. [38] Phagocytes are armed with inducible nitric oxide synthase (iNOS), which is activated by interferon-gamma (IFN-γ) as a single signal or by tumor necrosis factor (TNF) along with a second signal. [39] [40] [41] On the other hand, transforming growth factor-beta (TGF-β) provides a strong inhibitory signal to iNOS, whereas interleukin-4 (IL-4) and IL-10 provide weak inhibitory signals. In this way, the immune system may regulate the resources of phagocytes that play a role in inflammation and immune responses. [42] NO is secreted as free radicals in an immune response and is toxic to bacteria and intracellular parasites, including Leishmania [43] and malaria; [44] [45] [46] the mechanism for this includes DNA damage [47] [48] [49] and degradation of iron sulfur centers into iron ions and iron-nitrosyl compounds. [50]

Two important biological reaction mechanisms of NO are S-nitrosation of thiols, and nitrosylation of transition metal ions. S-nitrosation involves the (reversible) conversion of thiol groups, including cysteine residues in proteins, to form S-nitrosothiols (RSNOs). S-Nitrosation is a mechanism for dynamic, post-translational regulation of most or all major classes of protein. [51] The second mechanism, nitrosylation, involves the binding of NO to a transition metal ion like iron to modulate the normal enzymatic activity of an enzyme such as cytochrome P450. Nitrosylated ferrous iron is particularly stable, as the binding of the nitrosyl ligand to ferrous iron (Fe(II)) is very strong. Hemoglobin is a prominent example of a heme protein that may be modified by NO by multiple pathways. [52]

There are several mechanisms by which NO has been demonstrated to affect the biology of living cells. These include oxidation of iron-containing proteins such as ribonucleotide reductase and aconitase, activation of the soluble guanylate cyclase, ADP ribosylation of proteins, protein sulfhydryl group nitrosylation, and iron regulatory factor activation. [53] NO has been demonstrated to activate NF-κB in peripheral blood mononuclear cells, an important transcription factor in iNOS gene expression in response to inflammation. [54]

NO can be problematic under certain circumstances if it reacts with superoxide to produce the damaging oxidant peroxynitrite.

Pharmaceutical initiatives include: Nitroglycerin and amyl nitrite serve as vasodilators because they are converted to nitric oxide in the body. The vasodilating antihypertensive drug minoxidil contains an NO moiety and may act as an NO agonist. The mechanism of action for sildenafil (Viagra) is closely related to NO signaling. Inhaled NO may improve survival and recovery from paraquat poisoning.

Carbon monoxide

Carbon monoxide (CO) is produced naturally throughout phylogenetic kingdoms. In mammalian physiology, CO is an important neurotransmitter with beneficial roles such as reducing inflammation and blood vessel relaxation. [55] [56] [57] Mammals maintain a baseline carboxyhemoglobin level even if they do not breathe any CO fumes.

In mammals, CO is produced through many enzymatic and non-enzymatic pathways. The most extensively studied source is the catabolic action of heme oxygenase (HMOX) which has been estimated to account for 86% of endogenous CO production. Other contributing sources include: the microbiome, cytochrome P450 reductase, human acireductone dioxygenase, tyrosinase, lipid peroxidation, alpha-keto acids, and other oxidative mechanisms. Similarly, the velocity and catalytic activity of HMOX can be enhanced by a plethora of dietary substances and xenobiotics to increase CO production. [8]

The biomedical study of CO traces back to factitious airs in the 1790s when Thomas Beddoes, James Watt, James Lind, and many others investigated beneficial effects of hydrocarbonate (water gas) inhalation. [58] Following Solomon Snyder's first report that CO is a normal neurotransmitter in 1993, [59] [60] CO has received significant clinical attention as a biological regulator. Unlike NO and H
2
S
, CO is an inert molecule with remarkable chemical stability capable of diffusing through membranes to exert its effects locally and in distant tissues. [61] CO has been shown to interact with molecular targets including soluble guanylyl cyclase, mitochondrial oxidases, catalase, nitric oxide synthase, mitogen-activated protein kinase, PPAR gamma, HIF1A, NRF2, ion channels, cystathionine beta synthase, and numerous other functionalities. [62] It is widely accepted that CO primarily exerts its effects in mammals primarily through interacting with ferrous ion complexes such as the prosthetic heme moiety of hemoproteins. [7] Aside from Fe2+ interactions, CO may also interact with zinc within metalloproteinases, non-metallic histidine residues of certain ion channels, and various other metallic targets such nickel and molybdenum. [8]

Studies involving carbon monoxide have been conducted in many laboratories throughout the world for its anti-inflammatory and cytoprotective properties. [19] These properties have potential to be used to prevent the development of a series of pathological conditions including ischemia reperfusion injury, transplant rejection, atherosclerosis, severe sepsis, severe malaria, autoimmunity, and many other indications. [63] [64]

Hydrogen sulfide

Hydrogen sulfide (H
2
S
) has important signaling functions in mammalian physiology. [65] The gas is produced enzymatically by cystathionine beta-synthase and cystathionine gamma-lyase, endogenous non-enzymatic reactions, [66] and may also be produced by the microbiome. [67] Eventually the gas is converted to sulfite in the mitochondria by thiosulfate reductase, and the sulfite is further oxidized to thiosulfate and sulfate by sulfite oxidase. The sulfates are excreted in the urine. [68]

H
2
S
acts as a relaxant of smooth muscle and as a vasodilator. [69] Though both NO and H
2
S
have been shown to relax blood vessels, their mechanisms of action are different: while NO activates the enzyme guanylyl cyclase, H
2
S
activates ATP-sensitive potassium channels in smooth muscle cells. Researchers are not clear how the vessel-relaxing responsibilities are shared between NO and H
2
S
. However, there exists some evidence to suggest that NO does most of the vessel-relaxing work in large vessels and H
2
S
is responsible for similar action in smaller blood vessels. [70] H
2
S
deficiency can be detrimental to the vascular function after an acute myocardial infarction (AMI). H
2
S
therapy reduces myocardial injury and reperfusion complications. [71] [72] Due to its effects similar to NO (without its potential to form peroxides by interacting with superoxide), H
2
S
is now recognized as potentially protecting against cardiovascular disease. [69] [73]

Recent findings suggest strong cellular crosstalk of NO and H
2
S
, [74] demonstrating that the vasodilatatory effects of these two gases are mutually dependent. Additionally, H
2
S
reacts with intracellular S-nitrosothiols to form the smallest S-nitrosothiol (HSNO), and a role of H
2
S
in controlling the intracellular S-nitrosothiol pool has been suggested. [75]

H
2
S
is also active in the brain, where it increases the response of the NMDA receptor and facilitates long term potentiation, [76] which is involved in the formation of memory. In Alzheimer's disease and Parkinson's disease the brain's H
2
S
concentration is severely decreased. [77] [78]

The beneficial effects of H
2
S
signaling inspired pharmaceutical development initiatives. [79] Akin to NO, presenting possible new therapy opportunities for erectile dysfunction. [80] In 2005, it was shown that mice can be put into a state of suspended animation-like hypothermia by applying a low dosage of H
2
S
. [81] [82]

Excess endogenous production of H
2
S
can be problematic in disorders such as trisomy 21 (Down syndrome) [68] and type 1 diabetes. [70]

Gasotransmitter candidates

Some gaseous signaling molecules may be a gasotransmitter, notably methane and cyanide. [83] [84] There is ongoing controversy about the strict criteria for gasotransmitters. Some researchers have proposed use of the term small molecule signaling agent, while others have proposed to relax the criteria to include other gases, such as oxygen as an essential gasotransmitter, similar to that of essential amino acids. [85]

Related Research Articles

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Hemoglobin</span> Metalloprotein that binds with oxygen

Hemoglobin is a protein containing iron that facilitates the transport of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the exception of the fish family Channichthyidae and the tissues of some invertebrate animals. Hemoglobin in the blood carries oxygen from the respiratory organs to the other tissues of the body, where it releases the oxygen to enable aerobic respiration which powers the animal's metabolism. A healthy human has 12 to 20 grams of hemoglobin in every 100 mL of blood. Hemoglobin is a metalloprotein, a chromoprotein, and globulin.

<span class="mw-page-title-main">Hemoprotein</span> Protein containing a heme prosthetic group

A hemeprotein, or heme protein, is a protein that contains a heme prosthetic group. They are a very large class of metalloproteins. The heme group confers functionality, which can include oxygen carrying, oxygen reduction, electron transfer, and other processes. Heme is bound to the protein either covalently or noncovalently or both.

<span class="mw-page-title-main">Cytochrome c oxidase</span> Complex enzyme found in bacteria, archaea, and mitochondria of eukaryotes

The enzyme cytochrome c oxidase or Complex IV, is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes.

<span class="mw-page-title-main">Heme</span> Chemical coordination complex of an iron ion chelated to a porphyrin

Heme, or haem, is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver.

<span class="mw-page-title-main">Nitric oxide</span> Colorless gas with the formula NO

Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

Carboxyhemoglobin is a stable complex of carbon monoxide and hemoglobin (Hb) that forms in red blood cells upon contact with carbon monoxide. Carboxyhemoglobin is often mistaken for the compound formed by the combination of carbon dioxide (carboxyl) and hemoglobin, which is actually carbaminohemoglobin. Carboxyhemoglobin terminology emerged when carbon monoxide was known by its historic name, "carbonic oxide", and evolved through Germanic and British English etymological influences; the preferred IUPAC nomenclature is carbonylhemoglobin.

<span class="mw-page-title-main">Heme oxygenase</span> Class of enzymes

Heme oxygenase, or haem oxygenase, is an enzyme that catalyzes the degradation of heme to produce biliverdin, ferrous ion, and carbon monoxide.

<span class="mw-page-title-main">Endothelial NOS</span> Protein and coding gene in humans

Endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme that in humans is encoded by the NOS3 gene located in the 7q35-7q36 region of chromosome 7. This enzyme is one of three isoforms that synthesize nitric oxide (NO), a small gaseous and lipophilic molecule that participates in several biological processes. The other isoforms include neuronal nitric oxide synthase (nNOS), which is constitutively expressed in specific neurons of the brain and inducible nitric oxide synthase (iNOS), whose expression is typically induced in inflammatory diseases. eNOS is primarily responsible for the generation of NO in the vascular endothelium, a monolayer of flat cells lining the interior surface of blood vessels, at the interface between circulating blood in the lumen and the remainder of the vessel wall. NO produced by eNOS in the vascular endothelium plays crucial roles in regulating vascular tone, cellular proliferation, leukocyte adhesion, and platelet aggregation. Therefore, a functional eNOS is essential for a healthy cardiovascular system.

<span class="mw-page-title-main">Nitric oxide dioxygenase</span>

Nitric oxide dioxygenase (EC 1.14.12.17) is an enzyme that catalyzes the conversion of nitric oxide (NO) to nitrate (NO
3
) . The net reaction for the reaction catalyzed by nitric oxide dioxygenase is shown below:

<i>S</i>-Nitrosothiol Organic compounds or groups of the form –S–N=O

In organic chemistry, S-nitrosothiols, also known as thionitrites, are organic compounds or functional groups containing a nitroso group attached to the sulfur atom of a thiol. S-Nitrosothiols have the general formula R−S−N=O, where R denotes an organic group. Originally suggested by Ignarro to serve as intermediates in the action of organic nitrates, endogenous S-nitrosothiols were discovered by Stamler and colleagues and shown to represent a main source of NO bioactivity in vivo. More recently, S-nitrosothiols have been implicated as primary mediators of protein S-nitrosylation, the oxidative modification of cysteine thiol that provides ubiquitous regulation of protein function.

Biological functions of nitric oxide are roles that nitric oxide plays within biology.

Gaseous mediators are chemicals that are produced in small amounts by some cells of the mammalian body and have a number of biological signalling functions. There are three so-far-identified gaseous mediator molecules: nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO).

<i>S</i>-Nitrosoglutathione Chemical compound

S-Nitrosoglutathione (GSNO) is an endogenous S-nitrosothiol (SNO) that plays a critical role in nitric oxide (NO) signaling and is a source of bioavailable NO. NO coexists in cells with SNOs that serve as endogenous NO carriers and donors. SNOs spontaneously release NO at different rates and can be powerful terminators of free radical chain propagation reactions, by reacting directly with ROO• radicals, yielding nitro derivatives as end products. NO is generated intracellularly by the nitric oxide synthase (NOS) family of enzymes: nNOS, eNOS and iNOS while the in vivo source of many of the SNOs is unknown. In oxygenated buffers, however, formation of SNOs is due to oxidation of NO to dinitrogen trioxide (N2O3). Some evidence suggests that both exogenous NO and endogenously derived NO from nitric oxide synthases can react with glutathione to form GSNO.

<i>Nitric Oxide</i> (journal) Academic journal

Nitric Oxide is a peer-reviewed scientific journal and official journal of the Nitric Oxide Society. The journal covers the broad field of nitric oxide and other similar gaseous signaling molecules such as hydrogen sulfide and carbon monoxide. Published research includes basic and clinical topics such as cell biology, molecular biology, biochemistry, immunology, pathology, genetics, physiology, pharmacology, and disease processes.

Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several compounds produced by hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide; DATS is one of the most potent.

<span class="mw-page-title-main">Carbon monoxide-releasing molecules</span> Substances delivering CO within the body

Carbon monoxide-releasing molecules (CORMs) are chemical compounds designed to release controlled amounts of carbon monoxide (CO). CORMs are being developed as potential therapeutic agents to locally deliver CO to cells and tissues, thus overcoming limitations of CO gas inhalation protocols.

Gaseous signaling molecules are gaseous molecules that are either synthesized internally (endogenously) in the organism, tissue or cell or are received by the organism, tissue or cell from outside and that are used to transmit chemical signals which induce certain physiological or biochemical changes in the organism, tissue or cell. The term is applied to, for example, oxygen, carbon dioxide, sulfur dioxide, nitrous oxide, hydrogen cyanide, ammonia, methane, hydrogen, ethylene, etc.

Hydrogen sulfide is produced in small amounts by some cells of the mammalian body and has a number of biological signaling functions. Only two other such gases are currently known: nitric oxide (NO) and carbon monoxide (CO).

<span class="mw-page-title-main">Csaba Szabo (pharmacologist)</span>

Csaba Szabo, a physician and pharmacologist, is the Head of the Pharmacology Section of the University of Fribourg in Switzerland. The Public Library of Science Magazine, PLOS Biology, recognized Szabo in 2019 as one of the most cited researchers in the world.

References

  1. 1 2 Mustafa AK, Gadalla MM, Snyder SH (April 2009). "Signaling by gasotransmitters". Science Signaling. 2 (68): re2. doi:10.1126/scisignal.268re2. PMC   2744355 . PMID   19401594.
  2. Simpson PV, Schatzschneider U (2014-04-18). "Release of Bioactive Molecules Using Metal Complexes". In Gasser G (ed.). Inorganic Chemical Biology. Chichester, UK: John Wiley & Sons, Ltd. pp. 309–339. doi:10.1002/9781118682975.ch10. ISBN   978-1-118-68297-5.
  3. 1 2 Wang R (November 2002). "Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?". FASEB Journal. 16 (13): 1792–1798. doi:10.1096/fj.02-0211hyp. PMID   12409322. S2CID   40765922.
  4. Wang R (ed) (2004) Signal Transduction and the Gasotransmitters: NO, CO and H2S in Biology and Medicine. Humana Press, New Jersey, USA.
  5. Wang R (June 2012). "Shared signaling pathways among gasotransmitters". Proceedings of the National Academy of Sciences of the United States of America. 109 (23): 8801–2. Bibcode:2012PNAS..109.8801W. doi: 10.1073/pnas.1206646109 . PMC   3384202 . PMID   22615409.
  6. Hendriks KD, Maassen H, van Dijk PR, Henning RH, van Goor H, Hillebrands JL (April 2019). "Gasotransmitters in health and disease: a mitochondria-centered view". Current Opinion in Pharmacology. 45: 87–93. doi: 10.1016/j.coph.2019.07.001 . PMID   31325730. S2CID   198135525.
  7. 1 2 Motterlini R, Foresti R (March 2017). "Biological signaling by carbon monoxide and carbon monoxide-releasing molecules". American Journal of Physiology. Cell Physiology. 312 (3): C302–C313. doi: 10.1152/ajpcell.00360.2016 . PMID   28077358. S2CID   21861993.
  8. 1 2 3 Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, et al. (December 2020). "Role of Carbon Monoxide in Host-Gut Microbiome Communication". Chemical Reviews. 120 (24): 13273–13311. doi:10.1021/acs.chemrev.0c00586. PMID   33089988. S2CID   224824871.
  9. Wareham LK, Southam HM, Poole RK (October 2018). "Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria?". Biochemical Society Transactions. 46 (5): 1107–1118. doi:10.1042/BST20170311. PMC   6195638 . PMID   30190328.
  10. Shimizu T, Lengalova A, Martínek V, Martínková M (December 2019). "Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres". Chemical Society Reviews. 48 (24): 5624–5657. doi:10.1039/C9CS00268E. PMID   31748766. S2CID   208217502.
  11. Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M (July 2015). "Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors". Chemical Reviews. 115 (13): 6491–6533. doi:10.1021/acs.chemrev.5b00018. PMID   26021768.
  12. Campbell NK, Fitzgerald HK, Dunne A (July 2021). "Regulation of inflammation by the antioxidant haem oxygenase 1". Nature Reviews. Immunology. 21 (7): 411–425. doi:10.1038/s41577-020-00491-x. PMID   33514947. S2CID   231762031.
  13. Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F (September 2018). "Gasotransmitters and the immune system: Mode of action and novel therapeutic targets". European Journal of Pharmacology. 834: 92–102. doi:10.1016/j.ejphar.2018.07.026. PMID   30016662. S2CID   51679533.
  14. Siracusa R, Schaufler A, Calabrese V, Fuller PM, Otterbein LE (May 2021). "Carbon Monoxide: from Poison to Clinical Trials". Trends in Pharmacological Sciences. 42 (5): 329–339. doi:10.1016/j.tips.2021.02.003. PMC   8134950 . PMID   33781582.
  15. Singh S (August 2020). "Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology". ACS Chemical Neuroscience. 11 (16): 2407–2415. doi:10.1021/acschemneuro.0c00230. PMID   32564594. S2CID   219973120.
  16. Magierowski M, Magierowska K, Kwiecien S, Brzozowski T (May 2015). "Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing". Molecules. 20 (5): 9099–9123. doi: 10.3390/molecules20059099 . PMC   6272495 . PMID   25996214.
  17. Liu T, Mukosera GT, Blood AB (February 2020). "The role of gasotransmitters in neonatal physiology". Nitric Oxide. 95: 29–44. doi:10.1016/j.niox.2019.12.002. PMC   7241003 . PMID   31870965.
  18. Gibbons SJ, Verhulst PJ, Bharucha A, Farrugia G (October 2013). "Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics". Alimentary Pharmacology & Therapeutics. 38 (7): 689–702. doi:10.1111/apt.12467. PMC   3788684 . PMID   23992228.
  19. 1 2 Motterlini R, Otterbein LE (September 2010). "The therapeutic potential of carbon monoxide". Nature Reviews. Drug Discovery. 9 (9): 728–743. doi:10.1038/nrd3228. PMID   20811383. S2CID   205477130.
  20. Wallace JL, Wang R (May 2015). "Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter". Nature Reviews. Drug Discovery. 14 (5): 329–345. doi:10.1038/nrd4433. PMID   25849904. S2CID   5361233.
  21. Papapetropoulos A, Foresti R, Ferdinandy P (March 2015). "Pharmacology of the 'gasotransmitters' NO, CO and H2S: translational opportunities". British Journal of Pharmacology. 172 (6): 1395–1396. doi:10.1111/bph.13005. PMC   4369252 . PMID   25891246.
  22. Imbrogno S, Filice M, Cerra MC, Gattuso A (May 2018). "NO, CO and H2 S: What about gasotransmitters in fish and amphibian heart?". Acta Physiologica. 223 (1): e13035. doi:10.1111/apha.13035. PMID   29338122. S2CID   4793586.
  23. Kolupaev YE, Karpets YV, Beschasniy SP, Dmitriev AP (2019-09-01). "Gasotransmitters and Their Role in Adaptive Reactions of Plant Cells". Cytology and Genetics. 53 (5): 392–406. doi:10.3103/S0095452719050098. ISSN   1934-9440. S2CID   208605375.
  24. Tift MS, Alves de Souza RW, Weber J, Heinrich EC, Villafuerte FC, Malhotra A, et al. (2020-07-22). "Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia". Frontiers in Physiology. 11: 886. doi: 10.3389/fphys.2020.00886 . PMC   7387684 . PMID   32792988.
  25. Oleskin AV, Shenderov BA (2016-07-05). "Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota". Microbial Ecology in Health and Disease. 27: 30971. doi:10.3402/mehd.v27.30971. PMC   4937721 . PMID   27389418.
  26. Peng, H.; Chen, W.; Wang, B. (July 2012), Hermann, A.; Sitdikova, G. F.; Weiger, T. M. (eds.), "Methods for the Detection of Gasotransmitters", Gasotransmitters: Physiology and Pathophysiology, Berlin, Heidelberg: Springer, pp. 99–137, doi:10.1007/978-3-642-30338-8_4, ISBN   978-3-642-30338-8 , retrieved 2021-10-24
  27. Yang XX, Ke BW, Lu W, Wang BH (April 2020). "CO as a therapeutic agent: discovery and delivery forms". Chinese Journal of Natural Medicines. 18 (4): 284–295. doi:10.1016/S1875-5364(20)30036-4. PMID   32402406. S2CID   218635089.
  28. Mir JM, Maurya RC (2018-12-19). "A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications". Reviews in Inorganic Chemistry. 38 (4): 193–220. doi:10.1515/revic-2018-0011. ISSN   2191-0227. S2CID   105481514.
  29. Rőszer T (2012). The biology of subcellular nitric oxide. Dordrecht: Springer Science+Business Media B.V. ISBN   978-94-007-2818-9.
  30. Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, et al. (December 2019). "A forty year journey: The generation and roles of NO in plants". Nitric Oxide. 93: 53–70. doi:10.1016/j.niox.2019.09.006. PMID   31541734. S2CID   202718340.
  31. "Plant-based Diets | Plant-based Foods | Beetroot Juice | Nitric Oxide Vegetables". Berkeley Test. Archived from the original on 2013-10-04. Retrieved 2013-10-04.
  32. Ghosh SM, Kapil V, Fuentes-Calvo I, Bubb KJ, Pearl V, Milsom AB, et al. (May 2013). "Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential". Hypertension. 61 (5): 1091–1102. doi: 10.1161/HYPERTENSIONAHA.111.00933 . PMID   23589565.
  33. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. (March 2008). "Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite". Hypertension. 51 (3): 784–790. doi:10.1161/HYPERTENSIONAHA.107.103523. PMC   2839282 . PMID   18250365.
  34. Hezel MP, Weitzberg E (January 2015). "The oral microbiome and nitric oxide homoeostasis". Oral Diseases. 21 (1): 7–16. doi: 10.1111/odi.12157 . PMID   23837897.
  35. Cirino G, Vellecco V, Bucci M (November 2017). "Nitric oxide and hydrogen sulfide: the gasotransmitter paradigm of the vascular system". British Journal of Pharmacology. 174 (22): 4021–4031. doi:10.1111/bph.13815. PMC   5660007 . PMID   28407204.
  36. Dessy C, Feron O (2004). "Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature". Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents. 3 (3): 207–216. doi:10.2174/1568014043355348.
  37. James NT, Meek GA (January 1976). "Studies on the lipid content of pigeon breast muscle". Comparative Biochemistry and Physiology. A, Comparative Physiology. 53 (1): 105–107. doi:10.1016/s0300-9629(76)80020-5. PMID   174.
  38. Green SJ, Mellouk S, Hoffman SL, Meltzer MS, Nacy CA (August 1990). "Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes". Immunology Letters. 25 (1–3): 15–19. doi:10.1016/0165-2478(90)90083-3. PMID   2126524.
  39. Gorczynski RM, Stanley J (1999). Clinical immunology. Austin, TX: Landes Bioscience. ISBN   978-1-57059-625-4.
  40. Green SJ, Nacy CA, Schreiber RD, Granger DL, Crawford RM, Meltzer MS, Fortier AH (February 1993). "Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice". Infection and Immunity. 61 (2): 689–698. doi:10.1128/IAI.61.2.689-698.1993. PMC   302781 . PMID   8423095.
  41. Kamijo R, Gerecitano J, Shapiro D, Green SJ, Aguet M, Le J, Vilcek J (1995). "Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor". Journal of Inflammation. 46 (1): 23–31. PMID   8832969.
  42. Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, et al. (December 1994). "Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens". Immunology Letters. 43 (1–2): 87–94. doi:10.1016/0165-2478(94)00158-8. hdl: 2027.42/31140 . PMID   7537721.
  43. Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA (December 1990). "Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha". Journal of Immunology. 145 (12): 4290–4297. doi:10.4049/jimmunol.145.12.4290. PMID   2124240. S2CID   21034574.
  44. Seguin MC, Klotz FW, Schneider I, Weir JP, Goodbary M, Slayter M, et al. (July 1994). "Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells". The Journal of Experimental Medicine. 180 (1): 353–358. doi:10.1084/jem.180.1.353. PMC   2191552 . PMID   7516412.
  45. Mellouk S, Green SJ, Nacy CA, Hoffman SL (June 1991). "IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism". Journal of Immunology. 146 (11): 3971–3976. doi: 10.4049/jimmunol.146.11.3971 . PMID   1903415. S2CID   45487458.
  46. Klotz FW, Scheller LF, Seguin MC, Kumar N, Marletta MA, Green SJ, Azad AF (April 1995). "Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites". Journal of Immunology. 154 (7): 3391–3395. doi: 10.4049/jimmunol.154.7.3391 . PMID   7534796. S2CID   12612236.
  47. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, et al. (November 1991). "DNA deaminating ability and genotoxicity of nitric oxide and its progenitors". Science. 254 (5034): 1001–1003. Bibcode:1991Sci...254.1001W. doi:10.1126/science.1948068. PMID   1948068.
  48. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (April 1992). "DNA damage and mutation in human cells exposed to nitric oxide in vitro". Proceedings of the National Academy of Sciences of the United States of America. 89 (7): 3030–3034. Bibcode:1992PNAS...89.3030N. doi: 10.1073/pnas.89.7.3030 . PMC   48797 . PMID   1557408. Free text.
  49. Li CQ, Pang B, Kiziltepe T, Trudel LJ, Engelward BP, Dedon PC, Wogan GN (March 2006). "Threshold effects of nitric oxide-induced toxicity and cellular responses in wild-type and p53-null human lymphoblastoid cells". Chemical Research in Toxicology. 19 (3): 399–406. doi:10.1021/tx050283e. PMC   2570754 . PMID   16544944. free text
  50. Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM (November 1988). "Nitric oxide: a cytotoxic activated macrophage effector molecule". Biochemical and Biophysical Research Communications. 157 (1): 87–94. doi:10.1016/S0006-291X(88)80015-9. PMID   3196352.
  51. van Faassen E, Vanin A, eds. (2007). Radicals for life: the various forms of nitric oxide. Amsterdam: Elsevier. ISBN   978-0-444-52236-8.
  52. van Faassen E, Vanin A, eds. (2005). Encyclopedia of analytical science (2nd ed.). [Amsterdam]: Elsevier. ISBN   978-0-12-764100-3.
  53. Shami PJ, Moore JO, Gockerman JP, Hathorn JW, Misukonis MA, Weinberg JB (August 1995). "Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells". Leukemia Research. 19 (8): 527–533. doi:10.1016/0145-2126(95)00013-E. PMID   7658698.
  54. Kaibori M, Sakitani K, Oda M, Kamiyama Y, Masu Y, Nishizawa M, et al. (June 1999). "Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-kappaB activation in rat hepatocytes". Journal of Hepatology. 30 (6): 1138–1145. doi:10.1016/S0168-8278(99)80270-0. PMID   10406194.
  55. Wu L, Wang R (December 2005). "Carbon monoxide: endogenous production, physiological functions, and pharmacological applications". Pharmacological Reviews. 57 (4): 585–630. doi:10.1124/pr.57.4.3. PMID   16382109. S2CID   17538129.
  56. Olas B (October 2014). "Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO". Chemico-Biological Interactions. 222 (5 October 2014): 37–43. doi:10.1016/j.cbi.2014.08.005. PMID   25168849.
  57. Li L, Hsu A, Moore PK (September 2009). "Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases!". Pharmacology & Therapeutics. 123 (3): 386–400. doi: 10.1016/j.pharmthera.2009.05.005 . PMID   19486912.
  58. Hopper, C. P.; Zambrana, P. N.; Goebel, U.; Wollborn, J. (June 2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID   33838343. S2CID   233205099.
  59. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (January 1993). "Carbon monoxide: a putative neural messenger". Science. 259 (5093): 381–384. Bibcode:1993Sci...259..381V. doi:10.1126/science.7678352. PMID   7678352.
  60. Kolata G (January 26, 1993). "Carbon Monoxide Gas Is Used by Brain Cells As a Neurotransmitter". The New York Times. Retrieved May 2, 2010.
  61. Yang X, Lu W, Wang M, Tan C, Wang B (September 2021). ""CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications". Journal of Controlled Release. 338: 593–609. doi:10.1016/j.jconrel.2021.08.059. PMC   8526413 . PMID   34481027.
  62. Yang X, de Caestecker M, Otterbein LE, Wang B (July 2020). "Carbon monoxide: An emerging therapy for acute kidney injury". Medicinal Research Reviews. 40 (4): 1147–1177. doi:10.1002/med.21650. PMC   7280078 . PMID   31820474.
  63. Johnson CY (October 16, 2009). "Poison gas may carry a medical benefit". The Boston Globe. Retrieved October 16, 2009.
  64. Hopper, C. P.; Meinel, L.; Steiger, C.; Otterbein, L. E. (October 2018). "Where is the Clinical Breakthrough of Heme Oxygenase-1 / Carbon Monoxide Therapeutics?". Current Pharmaceutical Design. 24 (20): 2264–2282. doi:10.2174/1381612824666180723161811. PMID   30039755. S2CID   51712930.
  65. Paul BD, Snyder SH (March 2018). "Gasotransmitter hydrogen sulfide signaling in neuronal health and disease". Biochemical Pharmacology. 149: 101–109. doi:10.1016/j.bcp.2017.11.019. PMC   5868969 . PMID   29203369.
  66. Feng Y, Prokosch V, Liu H (April 2021). "Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma". Antioxidants. 10 (5): 671. doi: 10.3390/antiox10050671 . PMC   8146617 . PMID   33925849.
  67. Tomasova L, Konopelski P, Ufnal M (November 2016). "Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis". Molecules. 21 (11): 1558. doi: 10.3390/molecules21111558 . PMC   6273628 . PMID   27869680.
  68. 1 2 Kamoun P (July 2004). "[H2S, a new neuromodulator]". Médecine/Sciences. 20 (6–7): 697–700. doi: 10.1051/medsci/2004206-7697 . PMID   15329822.
  69. 1 2 Lefer DJ (November 2007). "A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide". Proceedings of the National Academy of Sciences of the United States of America. 104 (46): 17907–17908. Bibcode:2007PNAS..10417907L. doi: 10.1073/pnas.0709010104 . PMC   2084269 . PMID   17991773.
  70. 1 2 Wang R (March 2010). "Toxic gas, lifesaver". Scientific American. 302 (3): 66–71. Bibcode:2010SciAm.302c..66W. doi:10.1038/scientificamerican0310-66. PMID   20184185.
  71. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, et al. (February 2014). "Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent". Proceedings of the National Academy of Sciences of the United States of America. 111 (8): 3182–3187. Bibcode:2014PNAS..111.3182K. doi: 10.1073/pnas.1321871111 . PMC   3939925 . PMID   24516168.
  72. Powell CR, Dillon KM, Matson JB (March 2018). "A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications". Biochemical Pharmacology. 149: 110–123. doi:10.1016/j.bcp.2017.11.014. PMC   5866188 . PMID   29175421.
  73. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, et al. (November 2007). "Hydrogen sulfide mediates the vasoactivity of garlic". Proceedings of the National Academy of Sciences of the United States of America. 104 (46): 17977–17982. Bibcode:2007PNAS..10417977B. doi: 10.1073/pnas.0705710104 . PMC   2084282 . PMID   17951430.
  74. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, et al. (June 2012). "Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation". Proceedings of the National Academy of Sciences of the United States of America. 109 (23): 9161–9166. Bibcode:2012PNAS..109.9161C. doi: 10.1073/pnas.1202916109 . PMC   3384190 . PMID   22570497.
  75. Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, et al. (July 2012). "Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols". Journal of the American Chemical Society. 134 (29): 12016–12027. doi:10.1021/ja3009693. PMC   3408084 . PMID   22741609.
  76. Kimura H (August 2002). "Hydrogen sulfide as a neuromodulator". Molecular Neurobiology. 26 (1): 13–19. doi:10.1385/MN:26:1:013. PMID   12392053. S2CID   19562788.
  77. Eto K, Asada T, Arima K, Makifuchi T, Kimura H (May 2002). "Brain hydrogen sulfide is severely decreased in Alzheimer's disease". Biochemical and Biophysical Research Communications. 293 (5): 1485–1488. doi:10.1016/S0006-291X(02)00422-9. PMID   12054683.
  78. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (April 2010). "Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models". Aging Cell. 9 (2): 135–146. doi: 10.1111/j.1474-9726.2009.00543.x . PMID   20041858.
  79. Zheng, Y; Yu, B; De La Cruz, LK; RC, Manjusha; Anifowose, A; Wang, B (January 2018). "Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues". Medicinal Research Reviews. 38 (1): 57–100. doi: 10.1002/med.21433 . ISSN   1098-1128. PMID   28240384. S2CID   39528396.
  80. Hoffman M (2 March 2009). Chang L (ed.). "Hydrogen Sulfide: Potential Help for ED". WebMD.
  81. Mice put in 'suspended animation', BBC News, 21 April 2005
  82. Roth MB, Nystul T (June 2005). "Buying time in suspended animation". Scientific American. 292 (6): 48–55. Bibcode:2005SciAm.292f..48R. doi:10.1038/scientificamerican0605-48. PMID   15934652.
  83. Boros M, Tuboly E, Mészáros A, Amann A (January 2015). "The role of methane in mammalian physiology-is it a gasotransmitter?" (PDF). Journal of Breath Research. 9 (1): 014001. Bibcode:2015JBR.....9a4001B. doi:10.1088/1752-7155/9/1/014001. PMID   25624411. S2CID   12167059.
  84. Pacher P (June 2021). "Cyanide emerges as an endogenous mammalian gasotransmitter". Proceedings of the National Academy of Sciences of the United States of America. 118 (25): e2108040118. Bibcode:2021PNAS..11808040P. doi: 10.1073/pnas.2108040118 . PMC   8237670 . PMID   34099579.
  85. Wareham, Lauren K.; Southam, Hannah M.; Poole, Robert K. (19 October 2018). "Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria?". Biochemical Society Transactions. 46 (5): 1107–1118. doi: 10.1042/BST20170311 . PMC   6195638 .