Fetal pig

Last updated
External view of a fetal pig Fetal Pig - Forensics class (MxCC).jpg
External view of a fetal pig

Fetal pigs are unborn pigs used in elementary as well as advanced biology classes as objects for dissection. Pigs, as a mammalian species, provide a good specimen for the study of physiological systems and processes due to the similarities between many pig and human organs.

Contents

Use in biology labs

Along with frogs and earthworms, fetal pigs are among the most common animals used in classroom dissection. There are several reasons for this, including that pigs, like humans, are mammals. Shared traits include common hair, mammary glands, live birth, similar organ systems, metabolic levels, and basic body form. They also allow for the study of fetal circulation, which differs from that of an adult. Fetal pigs are easy to obtain at a relatively low price because they are by-products of the meat-packing industry. [1] These pigs are not bred and killed for this purpose, but are extracted from the deceased sow's uterus. Fetal pigs not used in classroom dissections are often used in fertilizer or simply discarded. [1] Fourthly, fetal pigs are easy to dissect because of their soft tissue and incompletely developed bones that are still made of cartilage. [2] In addition, they are relatively large with well-developed organs that are easily visible.

Alternatives

Several peer-reviewed comparative studies have concluded that the educational outcomes of students who are taught basic and advanced biomedical concepts and skills using non-animal methods are equivalent or superior to those of their peers who use animal-based laboratories such as animal dissection. [3] [4] A systematic review concluded that students taught using non-animal methods demonstrated "superior understanding of complex biological processes, increased learning efficiency, and increased examination results." [4] It also reported that students' confidence and satisfaction increased as did their preparedness for laboratories and their information-retrieval and communication abilities. [4]

Three studies at universities across the United States found that students who modeled body systems out of clay were significantly better at identifying the constituent parts of human anatomy than their classmates who performed animal dissection. [5] [6] [7] Another study found that students preferred using clay modeling over animal dissection and performed just as well as their cohorts who dissected animals. [8]

Development

Fetal pig being dissected, showing the thoracic cavity, including the rib cage, the heart in the pericardium, the lungs, the diaphragm, part of the liver, and all the organs under the neck Fetal pig thoracic cavity.jpg
Fetal pig being dissected, showing the thoracic cavity, including the rib cage, the heart in the pericardium, the lungs, the diaphragm, part of the liver, and all the organs under the neck

The size of the fetal pig depends on the time allowed for the mother to gestate:

SizeTime
80 mm68 days
100 mm75 days
158 mm86 days
220 mm100 days
300 mm114 days

Nutrition

No studies have found significant data regarding the mother swine's diet and fetal pig survival rate. However, there is a correlation between a mother pig having a nutritious diet containing proteins, vitamins and minerals during gestation period and the survival rate of piglets. The correlation, however, is not statistically different. Weight is also not a factor of survival rate because a healthier diet does not lead to a heavier offspring or a greater chance of live birth. [9]

Placental development

The placenta is used as a means of transferring nutrients from the mother to the fetus. The efficiency at which nutrients are transferred dictates the health and growth of the fetus. [10] Fetal weight/placental weight ratio, was commonly used to determine placental efficiency. [11] [12] Instead, a more accurate way of determining fetus growth is through certain characteristics of the placental lining. The placenta is made of a folded trophoblast/endometrial epithelial bilayer. The width and length of the placenta folds are positively related and increase as gestation progresses.

The width of the placental folds decreases until day 85 of gestation.[ citation needed ] From here, the width increases with gestation and is at its largest around day 105. The rate at which these folds increase is negatively related to fetus size. Thus, greater fold widths will be seen in smaller fetuses. Although increasing placental fold width does increase the interaction between fetus and mother, nutrient exchange is not most efficient in smaller fetal pigs, as would be expected. Many other factors, including depth of placental folds, are also responsible for these interactions. [13]

Prenatal development

The prenatal development of the fetus includes all the tissue and organ development. Within hours of mating, the sperm and egg undergo fertilization in the oviduct and three days later the egg moves into the uterus. The cells begin to specialize by day six, and attach themselves to the uterus lining by day eleven. From fertilization to day 18, the endoderm, ectoderm and mesoderm have been forming inside the embryo, and are completely formed by day 18, the same day the placenta forms. The endoderm transforms into the lungs, trachea, thyroid gland, and digestive tract of the fetus. The ectoderm has a greater role in the development of the fetus. It forms into the skin, nervous system, enamel of the teeth, lining of the intestine, mammary and sweat glands, hoofs, and hair. The mesoderm forms the major organ components that help keep the fetus alive. It forms the muscles and connective tissues of the body, blood vessels and cells, the skeleton, kidneys, adrenal glands, heart, and the reproductive organs. By day 20, most of the major organs are visible, and the last half of gestation focuses greatly on increasing the size of the fetuses. [14]

Development of lymphoid and haematopoiesis tissues

The development of the lymphatic system and the formation of blood circulation occur at different stages of fetal pig development. The first lymphatic organ to become present is the thymus. Lymphocyte builds up in the spleen on the 70th day. By day 77, the thymus is already completely developed and is distinguishable from other organs. Also, follicles are present on the tongue and intestines on day 77. On the 84th day, Periarteriolar lymphoid sheaths appear in the fetal pig. By this time, the liver and bone marrow are active and functional. [15]

Environmental effects on swine reproductive performance

Studies have shown that litter size, the amount of floor space during the growing period, and the number of pigs the gilt, or female pig, is placed with while growing affect the reproduction rates of the gilts. Data from a study in 1976 by Nelson and Robinson showed that gilts from a small litter size ovulated more than the gilts from the larger litters. The study suggests stress plays a role in impacting the reproduction. The amount of floor space has been shown to impact the time it takes gilts to reach puberty. An adequate amount of floor space allowed the higher percentage of gilts to reach puberty sooner than those gilts who had less floor space. The gilts placed in smaller groups bore one more pig per litter than gilts in larger groups. Still, the environment in which the fetal gilt develops is significant to the reproductive and physiological development. [16]

Preservation

Fetal pigs are often preserved in formaldehyde [ citation needed ], a carcinogenic substance. A 1980 study found that exposure to formaldehyde could possibly cause nasal cancer in rats, leading to research on whether this was possible in humans or not. [17] In 1995 it was concluded by the International Agency for Research on Cancer (IARC) that formaldehyde is a carcinogen for humans. [18]

Anatomy

Fetal pig brain situated in the cranium Fetal Pig Cerebelum.jpg
Fetal pig brain situated in the cranium

The anatomy of a fetal pig is similar to that of the adult pig in various aspects. Systems that are similar include the nervous, skeletal, respiratory (neglecting the under developed diaphragm), and muscular. Other important body systems have significant differences from the adult pig.

Circulatory system

There are only a few differences between the circulatory system of an adult pig and a fetal pig, besides from the umbilical arteries and vein. There is a shunt between the wall of the right and left atrium called the foramen ovale. This allows blood to pass directly from the right to left atrium. There is also the ductus arteriosus which allows blood from the right atrium to be diverted to the aortic arch. Both of these shunts close a few minutes after birth.

Digestive

The monogastric digestive system of the fetal pig harbors many similarities with many other mammals. The fetal pig's digestive organs are well developed before birth, although it does not ingest food. These organs include the esophagus, stomach, small and large intestines. Mesenteries serve to connect the organs of the fetal pig together. In order for digestion to occur, the fetal pig would have to ingest food. Instead, it gains much needed nutrition from the mother pig via the umbilical cord. In the adult pig, food will follow the general flow through the esophagus, which can be located behind the tracheae. From the oral cavity, the esophagus leads to the stomach, small intestine, and large intestine. Other organs developing during fetal pig development such as the gallbladder, pancreas and spleen are all critical in contributing to the overall flow of the digestive system because they contain digestive enzymes that will perform chemical digestion of food. After food is digested and nutrients are absorbed, the food follows through the large intestine and solid wastes are excreted through the anus. In the fetal pig however, the metabolic wastes are sent back to the mother through the umbilical cord where the mother excretes the wastes. Other remaining wastes remain in the fetal pig until birth. Then

The oral cavity of the fetal pig begins developing before birth. The tongue's taste buds, located in the enlarged papillae, facilitate food handling after birth. These taste buds develop during fetal development. Adult pigs have up to 15,000 taste buds, a much larger number than the average human tongue, which has 9,000. [19]

The dental anatomy of the fetal pig shows differences from adult pigs. The fetal pig develops primary teeth (which are later replaced with permanent teeth). Some may erupt during fetal stage, which is why some of the fetuses show evidence of teeth. Depending on the age of the fetal pig, it is natural to see eruptions of third incisor and canine in the fetal pig. [20] Because the fetal pigs were still in the mother's uterus, teeth will still form which supports reasons for hollow unerupted teeth that may be seen. Similar to human dental anatomy, the overall dental anatomy of the pig consists of incisors, canines, pre-molars, and molars. Piglets can have 28 teeth total and adult pigs can have 44 teeth total. [21]

Urogenital

Reproductive system of a female fetal pig Fetal Pig Ovaries.jpg
Reproductive system of a female fetal pig

The fetal pig's urogenital system is similar to the adult pig's system with the exception of the reproductive organs. The fetal pig urinary tract is relatively developed and easy to locate during dissection. The kidneys are located behind the abdominal organs and are partially embedded into the dorsal body wall by the spine. The ureters carry the urine to the urinary bladder, the large sack-like organ by the umbilical artery and vein, to the urethra. From there, the urine can be excreted.

Female

If the fetal pig is a female, there will be a fleshy protrusion ventral near the anus called the genital papilla. [22] The female's internal reproductive system is located below the kidneys. The two sac-like organs attached to the coil-like fallopian tubes are the ovaries. [23] The uterus, which becomes the vagina, is located where the fallopian tubes meet. This system can be difficult to find as it is small as well as extremely dorsal and posterior to the other systems.

Male

Male fetal pigs have an urogenital opening located behind the umbilical cord. The swelling behind the hind legs of the fetal pig [24] is the scrotum. The male's internal reproductive system has two scrotal sacs, which depending on the age of the fetal pig may or may not have developed testes. [25] The epididymis coil on the testes connects to the vas deferens. The vas deferens crosses over the ureter and enters the urethra, which then connects to the penis located just posterior to the skin. [26] Similar to the female system, it may be difficult to identify all parts.

See also

Related Research Articles

<span class="mw-page-title-main">Pregnancy (mammals)</span> Period of reproduction

In mammals, pregnancy is the period of reproduction during which a female carries one or more live offspring from implantation in the uterus through gestation. It begins when a fertilized zygote implants in the female's uterus, and ends once it leaves the uterus.

<span class="mw-page-title-main">Uterus</span> Female sex organ in mammals

The uterus or womb is the organ in the reproductive system of most female mammals, including humans, that accommodates the embryonic and fetal development of one or more embryos until birth. The uterus is a hormone-responsive sex organ that contains glands in its lining that secrete uterine milk for embryonic nourishment.

<span class="mw-page-title-main">Placenta</span> Organ that connects the fetus to the uterine wall

The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ, producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth. Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.

<span class="mw-page-title-main">Birth</span> Process of bearing offspring

Birth is the act or process of bearing or bringing forth offspring, also referred to in technical contexts as parturition. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the fetus at a developmental stage when it is ready to feed and breathe.

Development of the human body is the process of growth to maturity. The process begins with fertilization, where an egg released from the ovary of a female is penetrated by a sperm cell from a male. The resulting zygote develops through mitosis and cell differentiation, and the resulting embryo then implants in the uterus, where the embryo continues development through a fetal stage until birth. Further growth and development continues after birth, and includes both physical and psychological development that is influenced by genetic, hormonal, environmental and other factors. This continues throughout life: through childhood and adolescence into adulthood.

In medicine, prolapse is a condition in which organs fall down or slip out of place. It is used for organs protruding through the vagina, rectum, or for the misalignment of the valves of the heart. A spinal disc herniation is also sometimes called "disc prolapse". Prolapse means "to fall out of place", from the Latin prolabi meaning "to fall out".

<span class="mw-page-title-main">Female reproductive system</span> Reproductive system of human females

The female reproductive system is made up of the internal and external sex organs that function in the reproduction of new offspring. The human female reproductive system is immature at birth and develops to maturity at puberty to be able to produce gametes, and to carry a fetus to full term. The internal sex organs are the vagina, uterus, fallopian tubes, and ovaries. The female reproductive tract includes the vagina, uterus, and fallopian tubes and is prone to infections. The vagina allows for sexual intercourse and childbirth, and is connected to the uterus at the cervix. The uterus or womb accommodates the embryo, which develops into the fetus. The uterus also produces secretions, which help the transit of sperm to the fallopian tubes, where sperm fertilize ova produced by the ovaries. The external sex organs are also known as the genitals and these are the organs of the vulva including the labia, clitoris, and vaginal opening.

<span class="mw-page-title-main">Trophoblast</span> Early embryonic structure that gives rise to the placenta

The trophoblast is the outer layer of cells of the blastocyst. Trophoblasts are present four days after fertilization in humans. They provide nutrients to the embryo and develop into a large part of the placenta. They form during the first stage of pregnancy and are the first cells to differentiate from the fertilized egg to become extraembryonic structures that do not directly contribute to the embryo. After blastulation, the trophoblast is contiguous with the ectoderm of the embryo and is referred to as the trophectoderm. After the first differentiation, the cells in the human embryo lose their totipotency because they can no longer form a trophoblast. They become pluripotent stem cells.

<span class="mw-page-title-main">Gestational trophoblastic disease</span> Pregnancy-related tumours

Gestational trophoblastic disease (GTD) is a term used for a group of pregnancy-related tumours. These tumours are rare, and they appear when cells in the womb start to proliferate uncontrollably. The cells that form gestational trophoblastic tumours are called trophoblasts and come from tissue that grows to form the placenta during pregnancy.

<span class="mw-page-title-main">Placental abruption</span> Medical condition

Placental abruption is when the placenta separates early from the uterus, in other words separates before childbirth. It occurs most commonly around 25 weeks of pregnancy. Symptoms may include vaginal bleeding, lower abdominal pain, and dangerously low blood pressure. Complications for the mother can include disseminated intravascular coagulopathy and kidney failure. Complications for the baby can include fetal distress, low birthweight, preterm delivery, and stillbirth.

<span class="mw-page-title-main">Artificial womb</span> Device that would allow for extracorporeal pregnancy

An artificial womb or artificial uterus is a device that would allow for extracorporeal pregnancy, by growing a fetus outside the body of an organism that would normally carry the fetus to term. An artificial uterus, as a replacement organ, would have many applications. It could be used to assist male or female couples in the development of a fetus. This can potentially be performed as a switch from a natural uterus to an artificial uterus, thereby moving the threshold of fetal viability to a much earlier stage of pregnancy. In this sense, it can be regarded as a neonatal incubator with very extended functions. It could also be used for the initiation of fetal development. An artificial uterus could also help make fetal surgery procedures at an early stage an option instead of having to postpone them until term of pregnancy.

<span class="mw-page-title-main">Human reproductive system</span> Organs involved in reproduction

The human reproductive system includes the male reproductive system, which functions to produce and deposit sperm, and the female reproductive system, which functions to produce egg cells and to protect and nourish the fetus until birth. Humans have a high level of sexual differentiation. In addition to differences in nearly every reproductive organ, there are numerous differences in typical secondary sex characteristics.

<span class="mw-page-title-main">Placentation</span> Formation and structure of the placenta

Placentation refers to the formation, type and structure, or arrangement of the placenta. The function of placentation is to transfer nutrients, respiratory gases, and water from maternal tissue to a growing embryo, and in some instances to remove waste from the embryo. Placentation is best known in live-bearing mammals (theria), but also occurs in some fish, reptiles, amphibians, a diversity of invertebrates, and flowering plants. In vertebrates, placentas have evolved more than 100 times independently, with the majority of these instances occurring in squamate reptiles.

Porcine parvovirus (PPV), a virus in the species Ungulate protoparvovirus 1 of genus Protoparvovirus in the virus family Parvoviridae, causes reproductive failure of swine characterized by embryonic and fetal infection and death, usually in the absence of outward maternal clinical signs. The disease develops mainly when seronegative dams are exposed oronasally to the virus anytime during about the first half of gestation, and conceptuses are subsequently infected transplacentally before they become immunocompetent. There is no definitive evidence that infection of swine other than during gestation is of any clinical or economic significance. The virus is ubiquitous among swine throughout the world and is enzootic in most herds that have been tested. Diagnostic surveys have indicated that PPV is the major infectious cause of embryonic and fetal death. In addition to its direct causal role in reproductive failure, PPV can potentiate the effects of porcine circovirus type II (PCV2) infection in the clinical course of postweaning multisystemic wasting syndrome (PMWS).

A fetus or foetus is the unborn offspring that develops from a mammal embryo. Following embryonic development, the fetal stage of development takes place. In human prenatal development, fetal development begins from the ninth week after fertilization and continues until the birth of a newborn. Prenatal development is a continuum, with no clear defining feature distinguishing an embryo from a fetus. However, a fetus is characterized by the presence of all the major body organs, though they will not yet be fully developed and functional and some not yet situated in their final anatomical location.

An obstetric labor complication is a difficulty or abnormality that arises during the process of labor or delivery.

Immune tolerance in pregnancy or maternal immune tolerance is the immune tolerance shown towards the fetus and placenta during pregnancy. This tolerance counters the immune response that would normally result in the rejection of something foreign in the body, as can happen in cases of spontaneous abortion. It is studied within the field of reproductive immunology.

<span class="mw-page-title-main">Fetal membranes</span> Amnion and chorion which surround and protect a developing fetus

The fetal membranes are the four extraembryonic membranes, associated with the developing embryo, and fetus in humans and other mammals. They are the amnion, chorion, allantois, and yolk sac. The amnion and the chorion are the chorioamniotic membranes that make up the amniotic sac which surrounds and protects the embryo. The fetal membranes are four of six accessory organs developed by the conceptus that are not part of the embryo itself, the other two are the placenta, and the umbilical cord.

<span class="mw-page-title-main">Circumvallate placenta</span> Medical condition

Circumvallate placenta is a rare condition affecting about 1-2% of pregnancies, in which the amnion and chorion fetal membranes essentially "double back" on the fetal side around the edges of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface. Circumvallate placenta is a placental morphological abnormality associated with increased fetal morbidity and mortality due to the restricted availability of nutrients and oxygen to the developing fetus.

The anomaly scan, also sometimes called the anatomy scan, 20-week ultrasound, or level 2 ultrasound, evaluates anatomic structures of the fetus, placenta, and maternal pelvic organs. This scan is an important and common component of routine prenatal care. The function of the ultrasound is to measure the fetus so that growth abnormalities can be recognized quickly later in pregnancy, to assess for congenital malformations and multiple pregnancies, and to plan method of delivery.

References

  1. 1 2 Miller, James S. (1998). Why fetal pigs are good dissection specimens. Fetal pig dissection guide: including sheep heart, brain, and eye. (3rd). Goshen College. (http://www.goshen.edu/bio/PigBook/dissectionadvantages.html). [13 July 2009].
  2. Nebraska Scientific (2009). Preserved specimens: pigs. http://www.nebraskascientific.com/Shop_Our_Catalog/Preserved_Specimens/Pigs/ Archived 2009-07-03 at the Wayback Machine . [13 July 2009].
  3. Patronek, G.J.; Rauch, A (2007). "Systematic review of comparative studies examining alternatives to the harmful use of animals in biomedical education". Journal of the American Veterinary Medical Association. 230 (1): 37–43. doi:10.2460/javma.230.1.37. PMID   17199490.
  4. 1 2 3 Knight, A (2007). "The effectiveness of humane teaching methods in veterinary education". ALTEX. 24 (2): 91–109. doi: 10.14573/altex.2007.2.91 . PMID   17728975.
  5. Waters, J.R.; Van Meter, P; Perrotti, W; Drogo, S; Cyr, R.J (2005). "Cat dissection vs. sculpting human structures in clay: An analysis of two approaches to undergraduate human anatomy laboratory education". Advances in Physiology Education. 29 (1): 27–34. doi:10.1152/advan.00033.2004. PMID   15718380. S2CID   28694409.
  6. Motoike, H.K.; O'Kane, R.L.; Lenchner, E; Haspel, C (2009). "Clay modeling as a method to learn human muscles: A community college study". Anatomical Sciences Education. 2 (1): 19–23. doi: 10.1002/ase.61 . PMID   19189347.
  7. Waters, J.R.; Van Meter, P; Perrotti, W; Drogo, S; Cyr, R.J. (2011). "Human clay models versus cat dissection: How the similarity between the classroom and the exam affects student performance". Advances in Physiology Education. 35 (2): 227–236. doi:10.1152/advan.00030.2009. PMID   21652509.
  8. DeHoff, M.E.; Clark, K.L; Meganathan, K (2011). "Learning outcomes and student perceived value of clay modeling and cat dissection in undergraduate human anatomy and physiology". Advances in Physiology Education. 35 (1): 68–75. doi:10.1152/advan.00094.2010. PMID   21386004. S2CID   19112983.
  9. Casey, David; Johnson, Rodger K. (1999). "Response to Increasing Levels of Nutrients Fed During Gestation and Lactation to Control and Prolific Gilts". Nebraska Swine Reports. Retrieved July 15, 2009.
  10. Krombeen, Shanice K; Bridges, William C; Wilson, Matthew E; Wilmoth, Tiffany A (2019). "Factors contributing to the variation in placental efficiency on days 70, 90, and 110 of gestation in gilts". Journal of Animal Science. 97 (1): 359–373. doi:10.1093/jas/sky409. ISSN   0021-8812. PMC   6313123 . PMID   30329058.
  11. Vallet, Jeffrey L.; McNeel, Anthony K.; Miles, Jeremy R.; Freking, Bradley A. (2014-12-15). "Placental accommodations for transport and metabolism during intra-uterine crowding in pigs". Journal of Animal Science and Biotechnology. 5 (1): 55. doi: 10.1186/2049-1891-5-55 . ISSN   2049-1891. PMC   4416243 . PMID   25937925.
  12. Wilson, M E; Biensen, N J; Ford, S P (1999). "Novel insight into the control of litter size in pigs, using placental efficiency as a selection tool". Journal of Animal Science. 77 (7): 1654–1658. doi:10.2527/1999.7771654x. ISSN   0021-8812. PMID   10438009.
  13. Vallet, J. L.; Freking, B. A. (2007-12-01). "Differences in placental structure during gestation associated with large and small pig fetuses1,2". Journal of Animal Science. 85 (12): 3267–3275. doi:10.2527/jas.2007-0368. ISSN   0021-8812. PMID   17709791.
  14. Estienne, Mark J.; Harper, Allen F. (April 11, 2008). "Fetal Pig Programming - An Emerging Concept with Possible Implications for Swine Reproductive Performance". The Pig Site. Retrieved July 16, 2009.
  15. J. Kruml Contact Information, F. Kovář, J. Ludvík and I. Trebichavský (1970). The development of lymphoid and haemopoietic tissues in pig fetuses. Biomedical and Life Sciences. Retrieved July 15, 2009. https://doi.org/10.1007%2FBF02867043.
  16. Estienne, M. J., & Harper, A. F. (2008). Fetal Pig Programming - An Emerging Concept with Possible Implications for Swine Reproductive Performance. Livestock Update. April 2008. Retrieved July 16, 2009 from http://www.thepigsite.com/articles/2215/fetal-pig-programming-an-emerging-concept-with-possible-implications-for-swine-reproductive-performance.
  17. Retrieved July 20, 2009 from National Cancer Institute site: http://www.cancer.gov/cancertopics/factsheet/risk/formaldehyde. Article “Formaldehyde and cancer risk”
  18. Retrieved July 20, 2009 from National Cancer Institute site: http://www.cancer.gov/cancertopics/factsheet/risk/formaldehyde. Article “Formaldehyde and cancer risk”
  19. "Neuroscience for Kids - Animal Senses".
  20. Walker, Warren. Anatomy and Dissection of the Fetal Pig. Macmillan. 1997.
  21. "Veterinary Drawing of the Teeth of Your Pet Pig." UPPR. 1 Jun 2009 http://www.upprs.com/health/teeth.htm.An excerpt from The Veterinary Journal for Miniature Pets
  22. Biology @ Davidson. Retrieved July 10, 2009. http://www.bio.davidson.edu/Courses/bio112/Bio112LabMan/cppig.html
  23. Fetal Pig Dissection. Retrieved July 10, 2009. http://staff.tuhsd.k12.az.us/gfoster/standard/fetalpigdissection2.htm Archived 2009-04-24 at the Wayback Machine
  24. Biology @ Davidson. Retrieved July 10, 2009. http://www.bio.davidson.edu/Courses/bio112/Bio112LabMan/cppig.html
  25. Fetal Pig Dissection. Retrieved July 10, 2009. http://staff.tuhsd.k12.az.us/gfoster/standard/fetalpigdissection2.htm Archived 2009-04-24 at the Wayback Machine
  26. Glenister, T. W. "The development of the penile urethra in the pig." Journal of anatomy 90.Pt 4 (1956): 461.