Fiber cement siding

Last updated

Blue fiber cement siding Fiber cement siding.jpg
Blue fiber cement siding
HardiePanel on design-build addition, Ithaca NY Fiber Cement Siding.jpg
HardiePanel on design-build addition, Ithaca NY

Fiber cement siding (also known as "fibre cement cladding" in the United Kingdom, "fibro" in Australia, and by the proprietary name "Hardie Plank" in the United States) is a building material used to cover the exterior of a building in both commercial and domestic applications. Fiber cement is a composite material made of cement reinforced with cellulose fibers. Originally, asbestos was used as the reinforcing material but, due to safety concerns, that was replaced by cellulose in the 1980s. [1] Fiber cement board may come pre-painted or pre-stained or can be done so after its installation. [2]

Contents

Fiber cement siding has several benefits since it is resistant to termites, does not rot, is impact resistant, and has fireproof properties. [2] [3]

Specifications

Sheet sizes vary slightly from manufacturer to manufacturer but generally they range between 2400 – 3000 mm in length and 900 –1200mm in width (600 & 450 mm increments). This manufactured size minimizes on-site wastage as residential floor, wall and roof structures lay structural members at 450 or 600mm centres.

When used as siding boards, widths between 130mm and 300mm (5.25 inch to 12 inch) are available. [4] Fiber cement thicknesses vary between 4.5-18mm and also vary in density – the lower density resulting in a fibrous rough edge when cut and the higher density having a cleaner smoother edge when cut.

Thermal resistance and sound transmission can vary greatly between fiber cement products. Fiber cement sheet products rate poorly in thermal resistance and sound transmission and separate wall insulation is highly recommended. Generally the thicker and denser the product the better resistance it will have to temperature and sound transmission.

Installation

Fiber cement cladding is a very heavy product and requires two people to carry the uncut sheets. Thin fiber cement cladding is fragile before installation and must be handled carefully because it is prone to chipping and breakage if improperly handled. Once the product is cut it may again require two people to install – one to hold the sheet flush against studwork and the other to nail the product in place.

Cutting fiber cement sheeting:

Sheeting can be cut to size in three ways.

When hanging fiber cement sheets, an approximately 5-millimetre (0.2 in) gap is required between end-joints (cladding seams), later to be filled with caulking made for fiber cement siding. Metal 150 mm × 150 mm (6 in × 6 in) step flashing is required behind overlapping seams to prevent sheathing damage from water. Hot-dipped galvanized roofing nails are used to secure the sheets.

Some caution must be exercised to properly ventilate areas where fiber cement siding (FCS) is being cut; long-term exposure to the silica dust generated during the installation process can cause silicosis.

Fiber cement cladding can be painted or stained before or after installation. [2] Once the product is fixed the joints are usually covered with timber battens and the entire wall surface is painted.

Detail - timber battens on fiber cement cladding, dwelling addition, Hardys Bay, NSW, Australia Detail hardipanels.jpg
Detail - timber battens on fiber cement cladding, dwelling addition, Hardys Bay, NSW, Australia

History

Early fiber cement panels used asbestos fibers to add strength. Ludwig Hatschek patented asbestos-reinforced fiber cement in Austria in 1901 and named it "Eternit", based on the Latin term "aeternitas", meaning everlasting. In 1903, Schweizerische Eternit-Werke AG began fabricating the material in the city of Niederurnen in Switzerland. Cellulose-reinforced fiber cement products were introduced 1980s as a safe replacement for the very widely used asbestos cement products manufactured before that time.

Durability

The external cladding products require very little maintenance once installed and painted. The thicker/denser fiber cement products have excellent impact resistance but the thinner less dense products need to be protected from impact. Compared to wooden siding, fiber cement is not susceptible to termites or rot. [3] [5]

Fiber cement siding using baseboard materials that have been classified, by accredited laboratories, as Category A according to BS EN 12467: 2004 Fiber-cement flat sheets - Product specification and test methods are sidings which are intended for applications where they may be subject to heat, high moisture and severe frost.

Fire resistance

Fiber cement cladding is a non-combustible material which is widely used in high bushfire prone areas throughout Australia.

While the best possible reaction to Fire Classifications are A1 (construction applications) and A1Fl (flooring applications) respectively, both of which mean "non-combustible" according to European standard EN 13501-1: 2007, as classified by a notified laboratory in Europe, some fiber cement boards only come with Fire Classification of A2 (limited combustibility) or even lower classifications, if they are tested at all.

Safety

A video describing the dust hazards created by cutting fiber cement siding and an inexpensive way to reduce dust exposure.

Long-term exposure to silica dust generated by cutting fiber cement siding during installation can lead to silicosis and other lung diseases among workers. [6] Researchers at the US National Institute for Occupational Safety and Health (NIOSH) confirmed these findings, showing that many of the silica dust particles are in the respirable fraction, able to penetrate the deepest parts of the lung. [7] Laboratory tests performed by cutting fiber cement siding within an isolated chamber showed that by connecting a regular shop vacuum to a circular saw, exposures to silica dust produced by the cutting can be reduced by 80-90%. [8] Later, NIOSH completed four field surveys where construction workers cut fiber cement siding. Results showed that exposure to silica dust was controlled below the NIOSH Recommended Exposure Limit (REL) for respirable crystalline silica (0.05 mg/m3) when a regular shop vacuum was used. [9]

Alternatives

Competitors to fiber cement cladding include products made from vinyl, polyvinyl chloride, wood composite products (such as hardboard and Masonite) and aluminum siding.

See also

Related Research Articles

<span class="mw-page-title-main">Silicon dioxide</span> Oxide of silicon

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is abundant as it comprises several minerals and synthetic products. All forms are white or colorless, although impure samples can be colored.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Mineral wool</span> Fiber made from spun molten minerals

Mineral wool is any fibrous material formed by spinning or drawing molten mineral or rock materials such as slag and ceramics.

Calcium silicate is the chemical compound Ca2SiO4, also known as calcium orthosilicate and is sometimes formulated as 2CaO·SiO2. It is also referred to by the shortened trade name Cal-Sil or Calsil. It occurs naturally as the mineral larnite.

<span class="mw-page-title-main">Silicosis</span> Pneumoconiosis caused by inhalation of silica, quartz or slate particles

Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust. It is marked by inflammation and scarring in the form of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis. Silicosis, particularly the acute form, is characterized by shortness of breath, cough, fever, and cyanosis. It may often be misdiagnosed as pulmonary edema, pneumonia, or tuberculosis. Using workplace controls, silicosis is almost always a preventable disease.

<span class="mw-page-title-main">Siding (construction)</span> Exterior cladding on building walls

Siding or wall cladding is the protective material attached to the exterior side of a wall of a house or other building. Along with the roof, it forms the first line of defense against the elements, most importantly sun, rain/snow, heat and cold, thus creating a stable, more comfortable environment on the interior side. The siding material and style also can enhance or detract from the building's beauty. There is a wide and expanding variety of materials to side with, both natural and artificial, each with its own benefits and drawbacks. Masonry walls as such do not require siding, but any wall can be sided. Walls that are internally framed, whether with wood, or steel I-beams, however, must always be sided.

<span class="mw-page-title-main">Transite</span>

Transite originated as a brand that Johns Manville, an American company, created in 1929 for a line of asbestos-cement products, including boards and pipes. In time it became a generic term for other companies' similar asbestos-cement products, and later an even more generic term for a hard, fireproof composite material, fibre cement boards, typically used in wall construction. It can also be found in insulation, siding, roof gutters, and cement wallboard. The more prevalent transite found in wall construction and roofing tiles for example, will last anywhere from 50 years to over 100 years.

<span class="mw-page-title-main">Asbestos cement</span> Building material containing asbestos

Asbestos cement, genericized as fibro, fibrolite, or AC sheet, is a composite building material consisting of cement and asbestos fibres pressed into thin rigid sheets and other shapes.

<span class="mw-page-title-main">Black lung disease</span> Human disease caused by long-term exposure to coal dust

Black lung disease (BLD), also known as coal-mine dust lung disease, or simply black lung, is an occupational type of pneumoconiosis caused by long-term inhalation and deposition of coal dust in the lungs and the consequent lung tissue's reaction to its presence. It is common in coal miners and others who work with coal. It is similar to both silicosis from inhaling silica dust and asbestosis from inhaling asbestos dust. Inhaled coal dust progressively builds up in the lungs and leads to inflammation, fibrosis, and in worse cases, necrosis.

Occupational lung diseases comprise a broad group of diseases, including occupational asthma, industrial bronchitis, chronic obstructive pulmonary disease (COPD), bronchiolitis obliterans, inhalation injury, interstitial lung diseases, infections, lung cancer and mesothelioma. These can be caused directly or due to immunological response to an exposure to a variety of dusts, chemicals, proteins or organisms. Occupational cases of interstitial lung disease may be misdiagnosed as COPD, idiopathic pulmonary fibrosis, or a myriad of other diseases; leading to a delay in identification of the causative agent.

<span class="mw-page-title-main">Engineered stone</span> Composite material

Engineered stone is a composite material made of crushed stone bound together by an adhesive to create a solid surface. The adhesive is most commonly polymer resin, with some newer versions using cement mix. This category includes engineered quartz (SiO2), polymer concrete and engineered marble stone. The application of these products depends on the original stone used. For engineered marbles the most common application is indoor flooring and walls, while the quartz based product is used primarily for kitchen countertops as an alternative to laminate or granite. Related materials include geopolymers and cast stone. Unlike terrazzo, the material is factory made in either blocks or slabs, cut and polished by fabricators, and assembled at the worksite.

<span class="mw-page-title-main">Joint compound</span> A paste of gypsum powder and water that fills seams around sheets of drywall

Joint compound is a white powder of primarily gypsum dust mixed with water to form a paste the consistency of cake frosting, which is spread onto drywall and sanded when dry to create a seamless base for paint on walls and ceilings.

<span class="mw-page-title-main">Cement board</span> Backing board used in building construction

A cement board is a combination of cement and reinforcing fibers formed into sheets, of varying thickness that are typically used as a tile backing board. Cement board can be nailed or screwed to wood or steel studs to create a substrate for vertical tile and attached horizontally to plywood for tile floors, kitchen counters and backsplashes. It can be used on the exterior of buildings as a base for exterior plaster (stucco) systems and sometimes as the finish system itself.

<span class="mw-page-title-main">Building insulation material</span> Insulation material

Building insulation materials are the building materials that form the thermal envelope of a building or otherwise reduce heat transfer.

<span class="mw-page-title-main">Sandblasting</span> Method of marking or cleaning a surface

Sandblasting, sometimes known as abrasive blasting, is the operation of forcibly propelling a stream of abrasive material against a surface under high pressure to smooth a rough surface, roughen a smooth surface, shape a surface or remove surface contaminants. A pressurised fluid, typically compressed air, or a centrifugal wheel is used to propel the blasting material. The first abrasive blasting process was patented by Benjamin Chew Tilghman on 18 October 1870.

<span class="mw-page-title-main">Asbestos</span> Carcinogenic fibrous silicate mineral

Asbestos is a naturally occurring fibrous silicate mineral. There are six types, all of which are composed of long and thin fibrous crystals, each fibre being composed of many microscopic "fibrils" that can be released into the atmosphere by abrasion and other processes. Inhalation of asbestos fibres can lead to various dangerous lung conditions, including mesothelioma, asbestosis, and lung cancer. As a result of these health effects, asbestos is considered a serious health and safety hazard.

<span class="mw-page-title-main">Fibre cement</span> Type of composite construction material

Fibre cement is a composite building and construction material, used mainly in roofing and facade products because of its strength and durability. One common use is in fiber cement siding on buildings.

<span class="mw-page-title-main">Eternit</span> Type of fiber cement

Eternit is a registered trademark for a brand of fibre cement currently owned by the Belgian company Etex. Fibre is often applied in building and construction materials, mainly in roofing and facade products.

<span class="mw-page-title-main">Occupational dust exposure</span> Occupational hazard in agriculture, construction, forestry, and mining

Occupational dust exposure occurs when small particles are generated at the workplace through the disturbance/agitation of rock/mineral, dry grain, timber, fiber, or other material. When these small particles become suspended in the air, they can pose a risk to the health of those who breath in the contaminated air.

Occupational hazards of fire debris cleanup are the hazards to health and safety of the personnel tasked with clearing the area of debris and combustion products after a conflagration. Once extinguished, fire debris cleanup poses several safety and health risks for workers. Employers responsible for fire debris cleanup and other work in areas damaged or destroyed by fire are generally obliged by occupational safety and health legislation of the relevant national or regional authority to identify and evaluate hazards, correct any unsafe or unhealthy conditions and provide any necessary training and instruction and personal protective equipment to employees to enable them to carry out the task without undue exposure to hazards. Many of the approaches to control risk in occupational settings can be applied to preventing injuries and disease. This type of work can be completed by general construction firms who may not be fully trained specifically for fire safety and on fire hazards.

References

  1. "Asbestos in the home - what you need to know". Asbestoswise. Retrieved February 5, 2018.
  2. 1 2 3 Bob Vila (March 30, 2015), Cement Fiber Siding Installation, archived from the original on December 21, 2021, retrieved June 30, 2017
  3. 1 2 Huth, Mark W. (March 5, 2013). Understanding Construction Drawings. Cengage Learning. ISBN   978-1285061023.
  4. "HardiePlank Lap Siding" (PDF). October 2012. p. 84. Archived from the original (PDF) on August 16, 2009.
  5. Ball, John E (1980). "Mineral-Fiber Siding" . Light construction techniques: from foundation to finish. Reston, VA: Reston. p.  189. ISBN   978-0-8359-4035-1.
  6. Fairfax, R; Lofgren, DJ; Johnson, DC; Walley, TL (2004). "OSHA Compliance Issues". Journal of Occupational and Environmental Hygiene. 1 (1): D1–D6. doi:10.1080/15459620490264418. PMID   15202147. S2CID   71181439.
  7. Qi, Chaolong (March 26, 2013). "CDC - NIOSH Science Blog - Contractors Wanted: Help NIOSH Advance Research to Protect Workers from Silica". Centers for Disease Control and Prevention. Retrieved June 6, 2013.
  8. Garrett Burnett (director), Chaolong Qi (2013). Cutting fiber cement siding - silica dust and lung disease - YouTube (YouTube Video). Cincinnati, OH: National Institute for Occupational Safety and Health. Archived from the original on December 21, 2021.
  9. NIOSH [2015]. Reducing hazardous dust exposure when cutting fiber-cement siding. By Qi C, Whalen JJ. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 2015-185.