Fibrin degradation product

Last updated
Principles of D-dimer testing D-dimer production.pdf
Principles of D-dimer testing

Fibrin degradation products (FDPs), also known as fibrin split products, are components of the blood produced by clot degeneration. [1] Clotting, also called coagulation, at the wound site produces a mass of fibrin threads called a net that remains in place until the cut is healed. As a cut heals, the clotting slows down. Eventually the clot is broken down and dissolved by plasmin. When the clot and fibrin net dissolve, fragments of protein are released into the body. These fragments are fibrin degradation products or FDPs. If your body is unable to dissolve a clot, you may have abnormal levels of FDPs. The most notable subtype of fibrin degradation products is D-dimer.

Contents

The levels of these FDPs rise after any thrombotic event.

Fibrin and fibrinogen degradation product (FDP) testing is commonly used to diagnose disseminated intravascular coagulation. [2]

As tumor marker

A tumor marker known as AMDL-ELISA DR-70 (FDP), and now as Onko-Sure, was approved by the US FDA on July 1, 2008 for in vitro diagnostic only and serial testing for monitoring colorectal cancer with more effective by 50 percent than carcinoembryonic antigen (CEA) when CEA values is low. The Onko-Sure blood test can detect also tumors/cancers: of lung, breast, stomach, liver, colon; rectal, ovarian, esophageal, cervical, trophoblastic, thyroid, malignant lymphoma, and pancreatic. [3] [4]

See also

Related Research Articles

Thrombus blood clot

A thrombus, colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of cross-linked fibrin protein. The substance making up a thrombus is sometimes called cruor. A thrombus is a healthy response to injury intended to prevent bleeding, but can be harmful in thrombosis, when clots obstruct blood flow through healthy blood vessels.

Coagulation The sequential process in which the multiple coagulation factors of the blood interact, ultimately resulting in the formation of an insoluble fibrin clot; it may be divided into three stages: stage 1, the formation of intrinsic and extrinsic prothrom

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

Disseminated intravascular coagulation pathological process characterized by the widespread activation of the clotting cascade that results in the formation of blood clots in the small blood vessels throughout the body

Disseminated intravascular coagulation (DIC) is a condition in which blood clots form throughout the body, blocking small blood vessels. Symptoms may include chest pain, shortness of breath, leg pain, problems speaking, or problems moving parts of the body. As clotting factors and platelets are used up, bleeding may occur. This may include blood in the urine, blood in the stool, or bleeding into the skin. Complications may include organ failure.

Fibrin fibrous, non-globular protein involved in the clotting of blood.

Fibrin is a fibrous, non-globular protein involved in the clotting of blood. It is formed by the action of the protease thrombin on fibrinogen which causes it to polymerize. The polymerized fibrin together with platelets forms a hemostatic plug or clot over a wound site.

Fibrinogen Soluble protein complex in blood plasma and involved in clot formation

Fibrinogen is a glycoprotein complex that circulates in the blood of vertebrates. During tissue and vascular injury it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood clot. Fibrin clots function primarily to occlude blood vessels to stop bleeding. Fibrin also binds and reduces the activity of thrombin. This activity, sometimes referred to as antithrombin I, limits clotting. Fibrin also mediates blood platelet and endothelial cell spreading, tissue fibroblast proliferation, capillary tube formation, and angiogenesis and thereby promotes revascularization and wound healing.

Thrombin mammalian protein found in Homo sapiens

Thrombin is a serine protease, an enzyme that, in humans, is encoded by the F2 gene. Prothrombin is proteolytically cleaved to form thrombin in the clotting process. Thrombin in turn acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, as well as catalyzing many other coagulation-related reactions.

Fibrinolysis is a process that prevents blood clots from growing and becoming problematic. This process has two types: primary fibrinolysis and secondary fibrinolysis. The primary type is a normal body process, whereas secondary fibrinolysis is the breakdown of clots due to a medicine, a medical disorder, or some other cause.

Serum (blood) cell free fraction of blood

In blood, the serum is the fluid and solute component of blood after clotting. It is neither a blood cell, nor a clotting factor; it is the blood plasma not including the fibrinogens. Serum includes all proteins not used in blood clotting and all the electrolytes, antibodies, antigens, hormones, and any exogenous substances.

D-dimer is a fibrin degradation product, a small protein fragment present in the blood after a blood clot is degraded by fibrinolysis. It is so named because it contains two D fragments of the fibrin protein joined by a cross-link.

Coagulase

Coagulase is a protein enzyme produced by several microorganisms that enables the conversion of fibrinogen to fibrin. In the laboratory, it is used to distinguish between different types of Staphylococcus isolates. Importantly, S. aureus is generally coagulase-positive, meaning that a positive coagulase test would indicate the presence of S. aureus. A negative coagulase test would instead show the presence of coagulase negative organisms such as S. epidermidis or S. saprophyticus. However it is now known that not all S. aureus are coagulase-positive.

Hementin is an anticoagulant protease from the salivary glands of the giant Amazon leech. Hementin dissolves a type of platelet rich blood clot which cannot be dissolved by other well used drugs like streptokinase and urokinase.

Carcinoembryonic antigen

Carcinoembryonic antigen (CEA) describes a set of highly related glycoproteins involved in cell adhesion. CEA is normally produced in gastrointestinal tissue during fetal development, but the production stops before birth. Consequently, CEA is usually present at very low levels in the blood of healthy adults. However, the serum levels are raised in some types of cancer, which means that it can be used as a tumor marker in clinical tests. Serum levels can also be elevated in heavy smokers.

Thromboelastography (TEG) is a method of testing the efficiency of blood coagulation. It is a test mainly used in surgery and anesthesiology, although increasingly used in resuscitations in Emergency Departments, intensive care units, and labor and delivery suites. More common tests of blood coagulation include prothrombin time (PT,INR) and partial thromboplastin time (aPTT) which measure coagulation factor function, but TEG also can assess platelet function, clot strength, and fibrinolysis which these other tests cannot.

Kasabach–Merritt syndrome A rare disease usually seen in infants

Kasabach–Merritt syndrome, also known as hemangioma with thrombocytopenia is a rare disease, usually of infants, in which a vascular tumor leads to decreased platelet counts and sometimes other bleeding problems, which can be life-threatening. It is also known as hemangioma thrombocytopenia syndrome. It is named after Haig Haigouni Kasabach and Katharine Krom Merritt, the two pediatricians who first described the condition in 1940.

Thrombin time

The thrombin time (TT), also known as the thrombin clotting time (TCT) is a blood test that measures the time it takes for a clot to form in the plasma of a blood sample containing anticoagulant, after an excess of thrombin has been added. It is used to diagnose blood coagulation disorders and to assess the effectiveness of fibrinolytic therapy. This test is repeated with pooled plasma from normal patients. The difference in time between the test and the 'normal' indicates an abnormality in the conversion of fibrinogen to fibrin, an insoluble protein.

The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor, fibrinogen, circulates at normal levels but is dysfunctional. Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen. This fibrinogen interferes with normal blood clotting and/or lyses of blood clots. The condition therefore may cause pathological bleeding and/or thrombosis. Acquired dysfibrinogenemia is a non-hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease, autoimmune disease, a plasma cell dyscrasias, or certain cancers. It is associated primarily with pathological bleeding. Hereditary fibrinogen Aα-Chain amyloidosis is a sub-category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in, and disrupts the function of, the kidney.

The fibrinolysis system is responsible for removing blood clots. Hyperfibrinolysis describes a situation with markedly enhanced fibrinolytic activity, resulting in increased, sometimes catastrophic bleeding. Hyperfibrinolysis can be caused by acquired or congenital reasons. Among the congenital conditions for hyperfibrinolysis, deficiency of alpha-2-antiplasmin or plasminogen activator inhibitor type 1 (PAI-1) are very rare. The affected individuals show a hemophilia-like bleeding phenotype. Acquired hyperfibrinolysis is found in liver disease, in patients with severe trauma, during major surgical procedures, and other conditions. A special situation with temporarily enhanced fibrinolysis is thrombolytic therapy with drugs which activate plasminogen, e.g. for use in acute ischemic events or in patients with stroke. In patients with severe trauma, hyperfibrinolysis is associated with poor outcome. Moreover, hyperfibrinolysis may be associated with blood brain barrier impairment, a plasmin-dependent effect due to an increased generation of bradykinin.

Thromboelastometry (TEM), previously named rotational thromboelastography (ROTEG) or rotational thromboelastometry (ROTEM), is an established viscoelastic method for hemostasis testing in whole blood. It is a modification of traditional thromboelastography (TEG). TEM investigates the interaction of coagulation factors, their inhibitors, anticoagulant drugs, blood cells, specifically platelets, during clotting and subsequent fibrinolysis. The rheological conditions mimic the sluggish flow of blood in veins. TEM is performed with the ROTEM whole blood analyzer and is an enhancement of thrombelastography, originally described by H. Hartert in 1948.

Primary fibrinogenolysis is a medical condition that appears with abnormal production of fibrinogen/fibrin degradation products (FDP), degradation of coagulation factors V, VIII, IX, XI and/or degradation of the fibrin present in any pre-existing localized thrombi and hemostatic clots.

Blood clotting tests are the tests used for diagnostics of the hemostasis system. Coagulometer is the medical laboratory analyzer used for testing of the hemostasis system. Modern coagulometers realize different methods of activation and observation of development of blood clots in blood or in blood plasma.

References

  1. Gaffney PJ, Edgell T, Creighton-Kempsford LJ, Wheeler S, Tarelli E (1995). "Fibrin degradation product (FnDP) assays: analysis of standardization issues and target antigens in plasma". Br. J. Haematol. 90 (1): 187–94. doi:10.1111/j.1365-2141.1995.tb03399.x. PMID   7786784.
  2. "Fibrin/Fibrinogen Degradation Products". Archived from the original on 2008-08-21. Retrieved 2007-10-28.
  3. "510(k) summary: AMDL-ELISA DR-70® (FDP)" (PDF). Retrieved January 4, 2014.
  4. "Cancer Diagnostics" . Retrieved January 4, 2014.