Figure-ground (cartography)

Last updated
In this map, Germany is the most clearly recognizable figure, with everything else (the "faded part") being ground. However, secondary (less prominent but still recognizable and usable) figures include the European Union, the land, the ocean, and the inset map, each with its unique corresponding ground. Some features do not have clear figure-ground contrast, such as Europe (dark green+light green+dark gray vs. light gray+white), and can be difficult to perceive unambiguously. EU-Germany.svg
In this map, Germany is the most clearly recognizable figure, with everything else (the "faded part") being ground. However, secondary (less prominent but still recognizable and usable) figures include the European Union, the land, the ocean, and the inset map, each with its unique corresponding ground. Some features do not have clear figure-ground contrast, such as Europe (dark green+light green+dark gray vs. light gray+white), and can be difficult to perceive unambiguously.

Figure-ground contrast, in the context of map design, is a property of a map in which the map image can be partitioned into a single feature or type of feature that is considered as an object of attention (the figure), with the remainder of the map being relegated to the background, outside the current focus of attention. [1] It is thus based on the concept of figure–ground from Gestalt psychology. For example, in a street map with strong figure-ground contrast, the reader would be able to isolate and focus attention on individual features, like a given street, park, or lake, as well as layers of related features, like the street network.

Contents

Strong figure-ground contrast has been seen as a desirable goal of map design, because it helps the map reader to perceive distinct geographic phenomena in the map. This allows more complex composition techniques such as visual hierarchy to organize these phenomena into clear structures that help readers use the map for its intended purposes.

Fields other than cartography, such as psychology, neurology, and computer science, have studied differentiation of figure from ground. Many studies have employed different experiments, varying the shades, textures, and orientations of test pictures to determine the best method for figure–ground design with mixed results. A current application of figure–ground research is the development of computer vision for robots. By studying the way humans perceive figure and ground, methods can be developed to improve computer vision algorithms. [2] Unlike some of these other applications, in which figures and grounds are discovered in a natural visual field that may or may not have this contrast, in cartography they are intentionally created by design, based on knowledge of the visual perception tendencies of map readers.

Since the early days of academic cartography, there has been a recognition of the need for maps to have a conceptual structure. In The Look of Maps (1952), Arthur Robinson emphasized the need for visual contrast in making maps that are clearly organized, including the figure-ground relationship, "the visual relation of one or more components to the background on which they are seen." [3] In 1972, Borden Dent appears to have been the first to use the principles of perceptual psychology to develop a theory of how the figure-ground relationship emerges on maps (as well as Visual hierarchy), and a set of guidelines for design to strengthen it. [4] He identified heterogeneity (contrast), Contour (strong edges), Area (size) and Enclosedness (closure) as the primary determinants of figure identification, a model that gained wide support, soon becoming a core principle of the cartographic canon found in textbooks (including his own). He tied it directly to the idea of visual levels, the illusion that some elements on the map appear to float above the page, suggesting that figures are "above" their ground. This correlation has also gained widespread, if not universal, acceptance, [1] even though there are common situations when figures appear below their ground (such as a river beneath a road network).

Further research was largely grounded in Gestalt psychology and perception, which largely corroborated and expanded upon Dent's model. In summarizing the work to date, MacEachren added Orientation and Convexity to Dent's list, with the acknowledgment that these are relatively minor influences compared to the others. [5] MacEachren discussed the concept of visual levels as "related," but not equal, to figure-ground contrast.

Influences on figure–ground contrast

Several visual patterns are believed to contribute to figure-ground contrast, such that features that exhibit these patterns are easier to recognize as figures. These have been largely adopted from Gestalt psychology.

In this map, figures like Oman and the Arabian Sea are less obvious due to a lack of differentiation. The land and the ocean have strong differentiation, but can be difficult to recognize which is figure because neither is closed. Closure and centrality make Oman easier to isolate as a figure than India. Arabian Sea map.png
In this map, figures like Oman and the Arabian Sea are less obvious due to a lack of differentiation. The land and the ocean have strong differentiation, but can be difficult to recognize which is figure because neither is closed. Closure and centrality make Oman easier to isolate as a figure than India.

Relationship to visual hierarchy

The concept of figure-ground contrast is often confused with the concept of visual hierarchy. Both are related elements of map composition, the same design techniques frequently achieve both goals simultaneously, and they are synergistic in that strengthening one typically has the side effect of strengthening the other. The primary difference is in intent. Figure-ground contrast is about making each feature appear distinct from the rest of the features in the map, while visual hierarchy is about making each feature appear more or less important than the rest of the features in the map. [10]

Related Research Articles

Symbol Something that represents an idea, a process, or a physical entity

A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different concepts and experiences. All communication is achieved through the use of symbols. Symbols take the form of words, sounds, gestures, ideas, or visual images and are used to convey other ideas and beliefs. For example, a red octagon is a common symbol for "STOP"; on maps, blue lines often represent rivers; and a red rose often symbolizes love and compassion. Numerals are symbols for numbers; letters of an alphabet may be symbols for certain phonemes; and personal names are symbols representing individuals. The variable 'x', in a mathematical equation, may symbolize the position of a particle in space.

Gestalt psychology Theory of mind examining human perception, structures and organizing principles in sensory impressions

Gestalt psychology, gestaltism or configurationism is a school of psychology that emerged in the early twentieth century in Austria and Germany as a theory of perception that was a rejection of basic principles of Wilhelm Wundt's and Edward Titchener's elementalist and structuralist psychology.

Visual communication Method of communication

Visual communication is the use of visual elements to convey ideas and information which include but are not limited to, signs, typography, drawing, graphic design, illustration, industrial design, advertising, animation, and electronic resources. Humans have used visual communication since prehistoric times. Within modern culture, there are several types of characteristics when it comes to visual elements, they consist of objects, models, graphs, diagrams, maps, and photographs. Outside the different types of characteristics and elements, there are seven components of visual communication: Color, Shape, Tones, Texture, Figure-Ground, Balance, and Hierarchy.

Figure–ground (perception)

Figure–ground organization is a type of perceptual grouping that is a vital necessity for recognizing objects through vision. In Gestalt psychology it is known as identifying a figure from the background. For example, black words on a printed paper are seen as the "figure", and the white sheet as the "background".

Ambiguous image Image that exploits graphical similarities between two or more distinct images

Ambiguous images or reversible figures are visual forms which create ambiguity by exploiting graphical similarities and other properties of visual system interpretation between two or more distinct image forms. These are famous for inducing the phenomenon of multistable perception. Multistable perception is the occurrence of an image being able to provide multiple, although stable, perceptions.

Rubin vase

Rubin's vase is a famous set of ambiguous or bi-stable two-dimensional forms developed around 1915 by the Danish psychologist Edgar Rubin.

Illusory contours Visual illusions

Illusory contours or subjective contours are visual illusions that evoke the perception of an edge without a luminance or color change across that edge. Illusory brightness and depth ordering often accompany illusory contours. Friedrich Schumann is often credited with the discovery of illusory contours around the beginning of the 20th century, but they are present in art dating to the Middle Ages. Gaetano Kanizsa’s 1976 Scientific American paper marked the resurgence of interest in illusory contours for vision scientists.

Thematic map Type of map that visualizes data

A thematic map is a type of map that portrays the geographic pattern of a particular subject matter (theme) in a geographic area. This usually involves the use of map symbols to visualize selected properties of geographic features that are not naturally visible, such as temperature, language, or population. In this, they contrast with general reference maps, which focus on the location of a diverse set of physical features, such as rivers, roads, and buildings. Alternative names have been suggested for this class, such as special-subject or special-purpose maps, statistical maps, or distribution maps, but these have generally fallen out of common usage. Thematic mapping is closely allied with the field of Geovisualization.

Figure and ground or Figure ground may refer to:

Visual hierarchy Visual design technique to convey importance

Visual hierarchy, according to Gestalt psychology, is a pattern in the visual field wherein some elements tend to "stand out," or attract attention, more strongly than other elements, suggesting a hierarchy of importance. While it may occur naturally in any visual field, the term is most commonly used in design, where elements are intentionally designed to make some look more important than others. This order is created by the visual contrast between forms in a field of perception. Objects with highest contrast to their surroundings are recognized first by the human mind.

Alan M. MacEachren is an American geographer, Professor of Geography and Director, GeoVISTA Center, Department of Geography, The Pennsylvania State University. He is known for his cross-disciplinary work in the fields of human-centered geographic visualization, scientific and information visualization, and in statistics.

Borden D. Dent (1938–2000) was an American geographer and cartographer who served as professor emeritus and chairman of the Department of Geography and Anthropology at Georgia State University. His textbook, Cartography: Thematic Map Design, is one of the seminal texts in the field, and its sixth edition was reissued in 2009.

The principles of grouping are a set of principles in psychology, first proposed by Gestalt psychologists to account for the observation that humans naturally perceive objects as organized patterns and objects, a principle known as Prägnanz. Gestalt psychologists argued that these principles exist because the mind has an innate disposition to perceive patterns in the stimulus based on certain rules. These principles are organized into five categories: Proximity, Similarity, Continuity, Closure, and Connectedness.

Watercolor illusion Optical illusion in which a white area takes on a pale tint

The watercolor illusion, also referred to as the water-color effect, is an optical illusion in which a white area takes on a pale tint of a thin, bright, intensely colored polygon surrounding it if the coloured polygon is itself surrounded by a thin, darker border. The inner and outer borders of watercolor illusion objects often are of complementary colours. The watercolor illusion is best when the inner and outer contours have chromaticities in opposite directions in color space. The most common complementary pair is orange and purple. The watercolor illusion is dependent on the combination of luminance and color contrast of the contour lines in order to have the color spreading effect occur.

Map symbol Graphic depiction of a geographic phenomenon

A map symbol is a graphical device used to visually represent a real-world feature on a map, working in the same fashion as other forms of symbols. Map symbols may include point markers, lines, regions, continuous fields, or text; these can be designed visually in their shape, size, color, pattern, and other graphic variables to represent a variety of information about each phenomenon being represented.

Amodal completion

Amodal completion is the ability to see an entire object despite parts of it being covered by another object in front of it. It is one of the many functions of the visual system which aid in both seeing and understanding objects encountered on an everyday basis. This mechanism allows the world to be perceived as though it is made of coherent wholes. For example, when the sun sets over the horizon it is still perceived as a full circle, despite occlusion causing it to appear as a semi-circle. Another example of this is a cat behind a picket fence. Amodal completion allows the cats to be seen as a full animal continuing behind each picket of the fence. Essentially amodal completion allows for sensory stimulation from any parts of an occluded object we can not directly see.

Map layout Arrangement of map elements on a page

Map layout, also called map composition or (cartographic) page layout, is the part of cartographic design that involves assembling various map elements on a page. This may include the map image itself, along with titles, legends, scale indicators, inset maps, and other elements. It follows principles similar to page layout in graphic design, such as balance, gestalt, and visual hierarchy. The term map composition is also used for the assembling of features and symbols within the map image itself, which can cause some confusion; these two processes share a few common design principles but are distinct procedures in practice. Similar principles of layout design apply to maps produced in a variety of media, from large format wall maps to illustrations in books to interactive web maps, although each medium has unique constraints and opportunities.

A visual variable, in cartographic design, graphic design, and data visualization, is an aspect of a graphical object that can visually differentiate it from other objects, and can be controlled during the design process. The concept was first systematized by Jacques Bertin, a French cartographer and graphic designer, and published in his 1967 book, Sémiologie Graphique. Bertin identified a basic set of these variables and provided guidance for their usage; the concept and the set of variables has since been expanded, especially in cartography, where it has become a core principle of education and practice.

Cartographic design Process of designing maps

Cartographic design or map design is the process of crafting the appearance of a map, applying the principles of design and knowledge of how maps are used to create a map that has both aesthetic appeal and practical function. It shares this dual goal with almost all forms of design; it also shares with other design, especially graphic design, the three skill sets of artistic talent, scientific reasoning, and technology. As a discipline, it integrates design, geography, and geographic information science.

Typography (cartography) Text used to label maps

Typography, as an aspect of cartographic design, is the craft of designing and placing text on a map in support of the map symbols, together representing geographic features and their properties. It is also often called map labeling or lettering, but typography is more in line with the general usage of typography. Throughout the history of maps to the present, their labeling has been dependent on the general techniques and technologies of typography.

References

  1. 1 2 Tait, Alex (2018) Visual Hierarchy and Layout. The Geographic Information Science & Technology Body of Knowledge (2nd Quarter 2018 Edition), John P. Wilson (ed.). DOI: 10.22224/gistbok/2018.2.4
  2. Peter Nordlund, 1998, Figure–ground segmentation using multiple cues , Doctoral Dissertation, Department of Numerical Science and Computing Science, Stockholm University, Stockholm, Sweden.
  3. Robinson, Arthur, The Look of Maps, University of Wisconsin Press, 1952, p.69.
  4. 1 2 3 4 5 6 Borden D. Dent, 1972, "Visual organization and thematic map design", Annals of the Association for American Geographers, p. 79-93.
  5. 1 2 MacEachren, Alan M., How Maps Work, Guilford Press, 1995
  6. 1 2 Alan MacEachren and T.A. Mistrick, "The role of brightness differences in figure–ground: is darker figure?", The Cartographic Journal, 29:91-100, December 1992.
  7. Arthur Robinson et al., Elements of Cartography, 1995
  8. Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard, 2005, Thematic Cartography and Geographic Visualization, 2nd ed., Pearson Prentice Hall, Upper Saddle River, NJ
  9. G. Head, 1972, "Land-water differentiation in black and white cartography", The Canadian Cartographer, vol. 9, no. 1, p. 25-38.
  10. Mark Monmonier, 1993, Mapping it Out: Expository Cartography for the Humanities and Social Sciences, University of Chicago Press, Chicago, IL.