Filon quadrature

Last updated

In numerical analysis, Filon quadrature or Filon's method is a technique for numerical integration of oscillatory integrals. It is named after English mathematician Louis Napoleon George Filon, who first described the method in 1934. [1]

Contents

Description

The method is applied to oscillatory definite integrals in the form:

where is a relatively slowly-varying function and is either sine or cosine or a complex exponential that causes the rapid oscillation of the integrand, particularly for high frequencies. In Filon quadrature, the is divided into subintervals of length , which are then interpolated by parabolas. Since each subinterval is now converted into a Fourier integral of quadratic polynomials, these can be evaluated in closed-form by integration by parts. For the case of , the integration formula is given as: [1] [2]

where

Explicit Filon integration formulas for sine and complex exponential functions can be derived similarly. [2] The formulas above fail for small values due to catastrophic cancellation; [3] Taylor series approximations must be in such cases to mitigate numerical errors, with being recommended as a possible switchover point for 44-bit mantissa. [2]

Modifications, extensions and generalizations of Filon quadrature have been reported in numerical analysis and applied mathematics literature; these are known as Filon-type integration methods. [4] [5] These include Filon-trapezoidal [2] and Filon–Clenshaw–Curtis methods. [6]

Applications

Filon quadrature is widely used in physics and engineering for robust computation of Fourier-type integrals. Applications include evaluation of oscillatory Sommerfeld integrals for electromagnetic and seismic problems in layered media [7] [8] [9] and numerical solution to steady incompressible flow problems in fluid mechanics, [10] as well as various different problems in neutron scattering, [11] quantum mechanics [12] and metallurgy. [13]

See also

References

  1. 1 2 Filon, L. N. G. (1930). "III.—On a Quadrature Formula for Trigonometric Integrals". Proceedings of the Royal Society of Edinburgh. 49: 38–47. doi:10.1017/S0370164600026262.
  2. 1 2 3 4 Davis, Philip J.; Rabinowitz, Philip (1984). Methods of Numerical Integration (2 ed.). Academic Press. pp. 151–160. ISBN   9781483264288.
  3. Chase, Stephen M.; Fosdick, Lloyd D. (1969). "An algorithm for Filon quadrature". Communications of the ACM . 12 (8): 453–457. doi:10.1145/363196.363209.
  4. Iserles, A.; Nørsett, S. P. (2004). "On quadrature methods for highly oscillatory integrals and their implementation". BIT Numerical Mathematics . 44 (4): 755–772. doi:10.1007/s10543-004-5243-3.
  5. Xiang, Shuhuang (2007). "Efficient Filon-type methods for". Numerische Mathematik . 105: 633–658. doi:10.1007/s00211-006-0051-0.
  6. Domínguez, V.; Graham, I. G.; Smyshlyaev, V. P. (2011). "Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals". IMA Journal of Numerical Analysis . 31 (4): 1253–1280. doi:10.1093/imanum/drq036.
  7. Červený, Vlastislav; Ravindra, Ravi (1971). Theory of Seismic Head Waves. University of Toronto Press. pp. 287–289. ISBN   9780802000491.
  8. Mosig, J. R.; Gardiol, F. E. (1983). "Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers". IEE Proceedings H - Microwaves, Optics and Antennas . 130 (2): 175–182. doi:10.1049/ip-h-1.1983.0029.
  9. Chew, Weng Cho (1990). Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold. p. 118. ISBN   9780780347496.
  10. Dennis, S. C. R.; Chang, Gau-Zu (1970). "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100". Journal of Fluid Mechanics . 42 (3): 471–489. Bibcode:1970JFM....42..471D. doi:10.1017/S0022112070001428.
  11. Grimley, David I.; Wright, Adrian C.; Sinclair, Roger N. (1990). "Neutron scattering from vitreous silica IV. Time-of-flight diffraction". Journal of Non-Crystalline Solids . 119 (1): 49–64. Bibcode:1990JNCS..119...49G. doi:10.1016/0022-3093(90)90240-M.
  12. Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. (2023). "Advances in QED with intense background fields". Physics Reports . 1010: 1–138. arXiv: 2203.00019 . Bibcode:2023PhR..1010....1F. doi:10.1016/j.physrep.2023.01.003.
  13. Thouless, M. D.; Evans, A. G.; Ashby, M. F.; Hutchinson, J. W. (1987). "The edge cracking and spalling of brittle plates". Acta Metallurgica. 35 (6): 1333–1341. doi:10.1016/0001-6160(87)90015-0.