Flame deflector

Last updated
The main flame deflector in the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. It deflects the plume exhaust from NASA's Space Launch System rocket during launch. It features a new "steel plated" design and incorporates water pipes for sound suppression. Flame Deflector Complete at Launch Complex 39B (KSC-20180516-PH KLS01 0007).jpg
The main flame deflector in the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. It deflects the plume exhaust from NASA's Space Launch System rocket during launch. It features a new "steel plated" design and incorporates water pipes for sound suppression.

A flame deflector, flame diverter or flame trench is a structure or device designed to redirect or disperse the flame, heat, and exhaust gases produced by rocket engines or other propulsion systems. [2] The amount of thrust generated by a rocket launch, along with the sound it produces during liftoff, can damage the launchpad and service structure, as well as the launch vehicle. [3] The primary goal of the diverter is to prevent the flame from causing damage to equipment, infrastructure, or the surrounding environment. Flame diverters can be found at rocket launch sites and test stands where large volumes of exhaust gases are expelled during engine testing or vehicle launch.

Contents

Design and operation

The diverter typically comprises a robust, heat-resistant structure that channels the force of the exhaust gases and flames in a specific direction, typically away from the rocket or equipment. This is essential to prevent the potentially destructive effects of the high-temperature gases and to reduce the acoustic impact of the ignition.

A flame trench can also be used in combination with a diverter to form a trench-deflector system. The flames from the rocket travel through openings in the launchpad onto a flame deflector situated in the flame trench, which runs underneath the launch structure and extends well beyond the launchpad itself. [3] To further reduce the acoustic effects a water sound suppression system may be also used.

Notable examples

Apollo program

During the Apollo program the need for a flame deflector was a determining factor in the design of the Kennedy Space Center Launch Complex 39. NASA designers chose a two-way, wedge-type metal flame deflector. It measured 13 meters in height and 15 meters in width, with a total weight of 317 tons. Since the water table was close to the surface of the ground, the designers wanted the bottom of the flame trench at ground level. The flame deflector and trench determined the height and width of the octagonal shaped launch pad. [2]

Space Shuttle program

The Shuttle flame trench-deflector system under a vehicle ready for launch. Stspad39aflamepit.jpg
The Shuttle flame trench-deflector system under a vehicle ready for launch.

During the Space Shuttle program NASA modified Launch Complex 39B at Kennedy Space Center. They installed a flame trench that was 150 meters long, 18 meters wide, and 13 meters deep. [3] It was built with concrete and refractory brick. The main flame deflector was situated inside the trench directly underneath the rocket boosters. The V-shaped steel structure was covered with a high-temperature concrete material. It separated the exhaust of the orbiter main engines and of the solid rocket boosters into two flame trenches. [4] [5] It was approximately 11.6 meters high, 17.5 meters wide, and 22 meters long. [3] The Shuttle flame trench-diverter system was refurbished for the SLS program. [4] [6]

Baikonur Cosmodrome

A Soyuz rocket erected into position at the launch pad at the Baikonur Cosmodrome in Kazakhstan in 2009. The flame deflector and pit is visible below. Soyuz expedition 19 launch pad.jpg
A Soyuz rocket erected into position at the launch pad at the Baikonur Cosmodrome in Kazakhstan in 2009. The flame deflector and pit is visible below.

The main launch pads at the Russian launch complex of Baikonur Cosmodrome use a flame pit to manage launch exhaust. The launch vehicles are transported by rail to the launch pad, where they are vertically erected over a large flame deflector pit. [7] A similar structure was built by the European Space Agency at its Guiana Space Centre. [7]

SpaceX Starship launch mount

During the first orbital test flight of SpaceX's Starship vehicle in April 2023, the launch mount of Starbase was substantially damaged due to the lack of a flame diverter system. [8] The 33 Raptor rocket engines dug a 25-foot-deep (7.6 m) crater and scattered debris and dust over a wide area. [8] The company designed a new water deluge based flame diverter that protects the launch mount and vehicle by spraying large quantities of water from a piece of steel equipment under the rocket. [9] [8] In November of the same year, the new water deluge system successfully protected the launchpad during the second orbital flight test of Starship, avoiding the cloud of dust and debris that rose up during the first test. [10]

Related Research Articles

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Launch pad</span> Facility from which rockets are launched

A launch pad is an above-ground facility from which a rocket-powered missile or space vehicle is vertically launched. The term launch pad can be used to describe just the central launch platform, or the entire complex. The entire complex will include a launch mount or launch platform to physically support the vehicle, a service structure with umbilicals, and the infrastructure required to provide propellants, cryogenic fluids, electrical power, communications, telemetry, rocket assembly, payload processing, storage facilities for propellants and gases, equipment, access roads, and drainage.

<span class="mw-page-title-main">Reusable launch vehicle</span> Vehicles that can go to space and return

A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39A</span> Historic launch pad operated by NASA and SpaceX

Launch Complex 39A (LC-39A) is the first of Launch Complex 39's three launch pads, located at NASA's Kennedy Space Center in Merritt Island, Florida. The pad, along with Launch Complex 39B, was first constructed in the 1960s to accommodate the Saturn V launch vehicle, and has been used to support NASA crewed space flight missions, including the historic Apollo 11 moon landing and the Space Shuttle. The site is currently leased by SpaceX and supports launches of the Falcon 9 and Falcon Heavy rockets.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39</span> Historic Apollo Moonport

Launch Complex 39 (LC-39) is a rocket launch site at the John F. Kennedy Space Center on Merritt Island in Florida, United States. The site and its collection of facilities were originally built as the Apollo program's "Moonport" and later modified for the Space Shuttle program. Launch Complex 39 consists of three launch sub-complexes or "pads"—39A, 39B, and 39C—a Vehicle Assembly Building (VAB), a Crawlerway used by crawler-transporters to carry mobile launcher platforms between the VAB and the pads, Orbiter Processing Facility buildings, a Launch Control Center which contains the firing rooms, a news facility famous for the iconic countdown clock seen in television coverage and photos, and various logistical and operational support buildings.

<span class="mw-page-title-main">Mobile launcher platform</span> Structure used to support large rockets

A mobile launcher platform (MLP), also known as mobile launch platform, is a structure used to support a large multistage space vehicle which is assembled (stacked) vertically in an integration facility and then transported by a crawler-transporter (CT) to a launch pad. This becomes the support structure for launch.

<span class="mw-page-title-main">Cape Canaveral Launch Complex 34</span> Launch site at Cape Canaveral Space Force Station

Launch Complex 34 (LC-34) is a deactivated launch site on Cape Canaveral Space Force Station, Florida. LC-34 and its companion LC-37 to the north were used by NASA from 1961 through 1968 to launch Saturn I and IB rockets as part of the Apollo program. It was the site of the Apollo 1 fire, which claimed the lives of astronauts Gus Grissom, Ed White, and Roger Chaffee on January 27, 1967. The first crewed Apollo launch — Apollo 7 on October 11, 1968 — was the last time LC-34 was used.

<span class="mw-page-title-main">Rocket engine test facility</span> Location where rocket engines may be tested on the ground, under controlled conditions

A rocket engine test facility is a location where rocket engines may be tested on the ground, under controlled conditions. A ground test program is generally required before the engine is certified for flight. Ground testing is very inexpensive in comparison to the cost of risking an entire mission or the lives of a flight crew.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39B</span> Historic launch pad operated by NASA

Launch Complex 39B (LC-39B) is the second of Launch Complex 39's three launch pads, located at NASA's Kennedy Space Center in Merritt Island, Florida. The pad, along with Launch Complex 39A, was first designed for the Saturn V launch vehicle, which at the time was the United States' most powerful rocket. Typically used to launch NASA's crewed spaceflight missions since the late 1960s, the pad is currently configured for use by the agency's Space Launch System rocket, a Shuttle-derived launch vehicle which is currently used in the Artemis program and subsequent Moon to Mars campaigns. The pad had also been leased by NASA to aerospace company Northrop Grumman, for use as a launch site for their Shuttle-derived OmegA launch vehicle, for National Security Space Launch flights and commercial launches, before the OmegA program was cancelled.

<span class="mw-page-title-main">VTVL</span> Method of takeoff and landing used by rockets; vertical takeoff, vertical landing

Vertical takeoff, vertical landing (VTVL) is a form of takeoff and landing for rockets. Multiple VTVL craft have flown. The most successful VTVL vehicle was the Apollo Lunar Module which delivered the first humans to the Moon. Building on the decades of development, SpaceX utilised the VTVL concept for its flagship Falcon 9 first stage, which has delivered over three hundred successful powered landings so far.

<span class="mw-page-title-main">Ares I-X</span> Prototype and design concept demonstrator rocket

Ares I-X was the first-stage prototype and design concept demonstrator of Ares I, a launch system for human spaceflight developed by the National Aeronautics and Space Administration (NASA). Ares I-X was successfully launched on October 28, 2009. The project cost was $445 million. It was the final launch from LC-39B until Artemis 1 13 years later.

Fondu Fyre, sometimes called Fondue Fyre, is a refractory concrete developed for specialist application. Fondu Fyre is a heat and erosion resistant concrete developed during the Apollo space program. It was developed to withstand the supersonic plume of a rocket engine during launch and hot-fire tests.

<span class="mw-page-title-main">SpaceX Starbase</span> SpaceX private launch site

Starbase is an industrial complex and rocket launch facility that serves as the main testing and production location for Starship launch vehicles, as well as the headquarters of the American aerospace manufacturer SpaceX. Located at Boca Chica, near Brownsville, Texas, United States, Starbase has been under near-continuous development since the late 2010s, and comprises a spaceport near the Gulf of Mexico, a production facility at Boca Chica village, and a test site along Texas State Highway 4.

<span class="mw-page-title-main">SpaceX facilities</span> Launch facilities used by SpaceX

As of 2023, SpaceX operates four launch facilities: Cape Canaveral Space Launch Complex 40 (SLC-40), Vandenberg Space Force Base Space Launch Complex 4E (SLC-4E), Kennedy Space Center Launch Complex 39A (LC-39A), and Brownsville South Texas Launch Site (Starbase). Space Launch Complex 40 was damaged in the AMOS-6 accident in September 2016 and repair work was completed by December 2017. SpaceX believes that they can optimize their launch operations, and reduce launch costs, by dividing their launch missions amongst these four launch facilities: LC-39A for NASA launches, SLC-40 for United States Space Force national security launches, SLC-4E for polar launches, and South Texas Launch Site for commercial launches.

Sites for launching large rockets are often equipped with a sound suppression system to absorb or deflect acoustic energy generated during a rocket launch. As engine exhaust gasses exceed the speed of sound, they collide with the ambient air and shockwaves are created, with noise levels approaching 200 db. This energy can be reflected by the launch platform and pad surfaces, and could potentially cause damage to the launch vehicle, payload, and crew. For instance, the maximum admissible overall sound power level (OASPL) for payload integrity is approximately 145 db. Sound is dissipated by huge volumes of water distributed across the launch pad and launch platform during liftoff.

<span class="mw-page-title-main">Exploration Ground Systems</span> NASA program for launch vehicle support

NASA's Exploration Ground Systems (EGS) Program is one of three programs based at NASA's Kennedy Space Center in Florida. EGS was established to develop and operate the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport and launch. EGS is preparing the infrastructure to support NASA's Space Launch System (SLS) rocket and its payloads, such as the Orion spacecraft for Artemis I. Artemis I is the first to launch in a series of increasingly complex missions that will enable human exploration to the Moon and Mars.

<span class="mw-page-title-main">SpaceX Starship</span> Reusable super heavy-lift launch vehicle

Starship is a two-stage fully reusable super heavy-lift launch vehicle under development by American aerospace company SpaceX. On April 20, 2023, with the first Integrated Flight Test, Starship became the most massive and most powerful vehicle ever to fly. SpaceX has developed Starship with the intention of lowering launch costs using economies of scale. SpaceX aims to achieve this by reusing both rocket stages by "catching" them with the launch tower's systems, increasing payload mass to orbit, increasing launch frequency, mass-manufacturing the rockets and adapting it to a wide range of space missions. Starship is the latest project in SpaceX's reusable launch system development program and plan to colonize Mars.

<span class="mw-page-title-main">Starship flight test 1</span> First integrated test launch of SpaceX Starship

Starship flight test 1 was the maiden flight of the integrated SpaceX Starship launch vehicle. SpaceX performed the flight test on April 20, 2023. The prototype vehicle was destroyed less than four minutes after lifting off from the SpaceX Starbase in Boca Chica, Texas. The vehicle became the most powerful rocket ever flown, breaking the half-century-old record held by the Soviet Union's N1 rocket. The launch was the first "integrated flight test," meaning it was the first time that both the Super Heavy booster and the Starship spacecraft flew together as a fully integrated Starship launch vehicle.

<span class="mw-page-title-main">Starship flight test 2</span> Second launch of SpaceX Starship

Starship flight test 2 was the second flight test of the SpaceX Starship launch vehicle. SpaceX performed the flight test on November 18, 2023. The mission's primary objectives were for the vehicle to hot stage—a new addition to Starship's flight profile—followed by the second stage attaining a near-orbital trajectory with a controlled reentry over the Pacific Ocean, while the booster does a boostback burn with a propulsive splashdown in the Gulf of Mexico.

References

  1. Herridge, Linda (2018-05-29). "Launch Pad 39B Flame Trench Nears Completion". NASA. Archived from the original on 2023-02-06. Retrieved 2023-09-01.
  2. 1 2 "Moonport, CH11-7". www.hq.nasa.gov. Archived from the original on 2023-09-01. Retrieved 2023-09-01.
  3. 1 2 3 4 Wessels, Wessel (2022-10-26). "The Purpose Of A Flame Trench At A Rocket Launch Site". Headed For Space. Archived from the original on 2023-09-01. Retrieved 2023-09-01.
  4. 1 2 "Deflecting the flames of a monster rocket". The Planetary Society. Archived from the original on 2023-09-01. Retrieved 2023-09-01.
  5. Warnock, Lynda. "NASA - Flame Trench-Deflector System". www.nasa.gov. Archived from the original on 2022-11-28. Retrieved 2023-09-01.
  6. Bergin, Chris (2016-05-08). "Renewing the famous Flame Trench, one brick at a time". NASASpaceFlight.com. Archived from the original on 2023-09-01. Retrieved 2023-09-01.
  7. 1 2 "Launcher". www.esa.int. Archived from the original on 2023-09-02. Retrieved 2023-09-02.
  8. 1 2 3 "SpaceX Tests Starship Water Deluge System That It Should've Built in the First Place". Gizmodo. 2023-07-18. Archived from the original on 2023-09-01. Retrieved 2023-09-01.
  9. Kolodny, Lora (2023-07-28). "SpaceX hasn't obtained environmental permits for 'flame deflector' system it's testing in Texas". CNBC. Archived from the original on 2023-10-07. Retrieved 2023-09-01.
  10. Chang, Kenneth (2023-11-18). "SpaceX Makes Progress in 2nd Launch of Giant Moon and Mars Rocket". The New York Times. ISSN   0362-4331. Archived from the original on 2023-11-20. Retrieved 2023-11-20.