Fokas method

Last updated

The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.

Contents

Traditionally, linear boundary value problems are analysed using either integral transforms and infinite series, or by employing appropriate fundamental solutions.

Integral transforms and infinite series

For example, the Dirichlet problem of the heat equation on the half-line, i.e., the problem

 

 

 

 

(Eq.1)

 

 

 

 

(Eq.2)

and given, can be solved via the sine-transform. The analogous problem on a finite interval can be solved via an infinite series. However, the solutions obtained via integral transforms and infinite series have several disadvantages:

1. The relevant representations are not uniformly convergent at the boundaries. For example, using the sine-transform, equations Eq.1 and Eq.2 imply

 

 

 

 

(Eq.3)

For , this representation cannot be uniformly convergent at , otherwise one could compute by inserting the limit inside the integral of the rhs of Eq.3 and this would yield zero instead of .

2. The above representations are unsuitable for numerical computations. This fact is a direct consequence of 1.

3. There exist traditional integral transforms and infinite series representations only for a very limited class of boundary value problems.
For example, there does not exist the analogue of the sine-transform for solving the following simple problem:

 

 

 

 

(Eq.4)

supplemented with the initial and boundary conditions Eq.2 .

For evolution PDEs, the Fokas method:

  1. Constructs representations which are always uniformly convergent at the boundaries.
  2. These representations can be used in a straightforward way, for example using MATLAB, for the numerical evaluation of the solution.
  3. Constructs representations for evolution PDEs with spatial derivatives of any order.

In addition, the Fokas method constructs representations which are always of the form of the Ehrenpreis fundamental principle.

Fundamental solutions

For example, the solutions of the Laplace, modified Helmholtz and Helmholtz equations in the interior of the two-dimensional domain , can be expressed as integrals along the boundary of . However, these representations involve both the Dirichlet and the Neumann boundary values, thus since only one of these boundary values is known from the given data, the above representations are not effective. In order to obtain an effective representation, one needs to characterize the generalized Dirichlet to Neumann map; for example, for the Dirichlet problem one needs to obtain the Neumann boundary value in terms of the given Dirichlet datum.

For elliptic PDEs, the Fokas method:

  1. Provides an elegant formulation of the generalised Dirichlet to Neumann map by deriving an algebraic relation, called the global relation, which couples appropriate transforms of all boundary values.
  2. For simple domains and a variety of boundary conditions the global relation can be solved analytically. Furthermore, for the case that is an arbitrary convex polygon, the global relation can be solved numerically in a straightforward way, for example using MATLAB. Also, for the case that is a convex polygon, the Fokas method constructs an integral representation in the Fourier complex plane. By using this representation together with the global relation it is possible to compute the solution numerically inside the polygon in a straightforward semi-analytic manner.

The forced heat equation on the half-line

Let satisfy the forced heat equation

 

 

 

 

(Eq.5)

supplemental with the initial and boundary conditions Eq.2 , where are given functions with sufficient smoothness, which decay as .

The unified transform involves the following three simple steps.

1. By employing the Fourier transform pair

 

 

 

 

(Eq.6)

obtain the global relation.
For equation Eq.5 , we find

 

 

 

 

(Eq.7)

where the functions and are the following integral transforms:

 

 

 

 

(Eq.8)

This step is similar with the first step used for the traditional transforms. However, equation Eq.7 involves the t-transforms of both and , whereas in the case of the sine-transform does not appear in the analogous equation (similarly, in the case of the cosine-transform only appears). On the other hand, equation Eq.7 is valid in the lower-half complex -plane, wheres the analogous equations for the sine and cosine transforms are valid only for real. The Fokas method is based on the fact that equation Eq.7 has a large domain of validity.

2. By using the inverse Fourier transform, the global relation yields an integral representation on the real line. By deforming the real axis to a contour in the upper half -complex plane, it is possible to rewrite this expression as an integral along the contour , where is the boundary of the domain , which is the part of in the upper half complex plane, with defined by

where is defined by the requirement that solves the given PDE.
Figure 1: The curve
[?]
D
+
{\displaystyle \partial D^{+}} Figure the curve.png
Figure 1: The curve
For equation Eq.5 , equations Eq.6 and Eq.7 imply

 

 

 

 

(Eq.9)

where the contour is depicted in figure 1.

In this case, , where . Thus, implies , i.e., and .
The fact that the real axis can be deformed to is a consequence of the fact that the relevant integral is an analytic function of which decays in as . [1]

3. By using the global relation and by employing the transformations in the complex- plane which leave invariant, it is possible to eliminate from the integral representation of the transforms of the unknown boundary values. For equation Eq.5 , , thus the relevant transformation is . Using this transformation, equation Eq.7 becomes

 

 

 

 

(Eq.10)

In the case of the Dirichlet problem, solving equation Eq.10 for and substituting the resulting expression in Eq.9 we find

 

 

 

 

(Eq.11)

If is important to note that the unknown term does not contribute to the solution . Indeed, the relevant integral involves the term , which is analytic and decays as in , thus Jordan's lemma implies that yields a zero contribution.
Equation Eq.11 can be rewritten in a form which is consistent with the Ehrenpreis fundamental principle: if the boundary condition is specified for , where is a given positive constant, then using Cauchy's integral theorem, it follows that Eq.11 is equivalent with the following equation:

 

 

 

 

(Eq.12)

where

Uniform convergence
The unified transform constructs representations which are always uniformly convergent at the boundaries. For example, evaluating Eq.12 at , and then letting in the first term of the second integral in the rhs of Eq.12 , it follows that

The change of variables , , implies that .

Numerical evaluation It is straightforward to compute the solution numerically using quadrature after the contour has been deformed to ensure exponential decay of the integrand. [2] For simplicity we concentrate on the case that the relevant transforms can be computed analytically. For example,

Then, equation Eq.11 becomes

 

 

 

 

(Eq.13)

For on , the term decays exponentially as . Also by deforming to where is a contour between the real axis and , it follows that for on the term also decays exponentially as . Thus, equation Eq.13 becomes

and the rhs of the above equation can be computed using MATLAB.

For the details of effective numerical quadrature using the unified transform, we refer the reader to, [2] which solves the advection-dispersion equation on the half-line. There it was found that the solution lends itself to quadrature (Gauss-Laguerre quadrature for exponential decay of integrand or Gauss-Hermite quadrature for squared exponential decay of integrand) with exponential convergence.


An Evolution Equation with Spatial Derivatives of Arbitrary order.
Suppose that is a solution of the given PDE. Then, is the boundary of the domain defined earlier.

If the given PDE contain spatial derivatives of order , then for even, the global relation involves unknowns, whereas for odd it involves or unknowns (depending on the coefficient of the highest derivative). However, using an appropriate number of transformations in the complex -plane which leave invariant, it is possible to obtain the needed number of equations, so that the transforms of the unknown boundary values can be obtained in terms of and of the given boundary data in terms of the solution of a system of algebraic equations.

A Numerical Collocation Method

The Fokas method gives rise to a novel spectral collocation method occurring in Fourier space. Recent work has extended the method and demonstrated a number of its advantages; it avoids the computation of singular integrals encountered in more traditional boundary based approaches, it is fast and easy to code up, it can be used for separable PDEs where no Green's function is known analytically and it can be made to converge exponentially with the correct choice of basis functions.

Basic method in a convex bounded polygon

Suppose that and both satisfy Laplace's equation in the interior of a convex bounded polygon . It follows that

Then Green's theorem implies the relation

 

 

 

 

(Eq.14)

In order to express the integrand of the above equation in terms of just the Dirichlet and Neumann boundary values, we parameterize and in terms of the arc length, , of . This leads to

 

 

 

 

(Eq.15)

where denotes the normal derivative.

In order to further simplify the global relation, we introduce the complex variable , and its conjugate . We then choose the test function , leading to the global relation for Laplace's equation:

 

 

 

 

(Eq.16)

A similar argument can also be used in the presence of a forcing term (giving a non-zero right-hand side). An identical argument works for the Helmholtz equation

and the modified Helmholtz equation

Choosing respective test functions and lead to respective global relations

and

These three cases deal with more general second order elliptic constant coefficient PDEs through a suitable linear change of variables.

The Dirichlet to Neumann map for a convex polygon Suppose that is the interior of a bounded convex polygon specified by the corners . In this case, the global relation Eq.16 takes the form

 

 

 

 

(Eq.17)

where

 

 

 

 

(Eq.18)

or

 

 

 

 

(Eq.19)

The side , which is the side between and , can be parametrized by

Hence,

The functions and can be approximated in terms of Legendre polynomials:

 

 

 

 

(Eq.20)

where for the cases of the Dirichlet, Neumann or Robin boundary value problems either , or a linear combination of and is given.

Equation Eq.19 now becomes an approximate global relation, where

 

 

 

 

(Eq.21)

with denoting the Fourier transform of , i.e.,

 

 

 

 

(Eq.22)

can be computed numerically via where denotes the modified Bessel function of the first kind.

The global relation involves unknown constants (for the Dirichlet problem, these constants are ). By evaluating the global relation at a sufficiently large number of different values of , the unknown constants can be obtained via the solution of a system of algebraic equations.

It is convenient to choose the above values of on the rays For this choice, as , the relevant system is diagonally dominant, thus its condition number is very small. [3]

Dealing with non-convexity

Whilst the global relation is valid for non-convex domains , the above collocation method becomes numerically unstable. [4] A heuristic explanation for this ill-conditioning in the case of the Laplace equation is as follows. The `test functions' grow/decay exponentially in certain directions of . When using a sufficiently large selection of complex -values, located in all directions from the origin, each side of a convex polygon will for many of these -values encounter larger test functions than do the remaining sides. This is exactly the same argument that motivates the `ray' choice of collocation points given by , which yield a diagonally dominant system. In contrast, for a non-convex polygon, boundary regions in indented regions will always be dominated by effects from other boundary parts, no matter the -value. This can easily be overcome by splitting up the domain into numerous convex regions (introducing fictitious boundaries) and matching the solution and normal derivative across these internal boundaries. Such splitting also allows the extension of the method to exterior/unbounded domains (see below).

Evaluating in the domain interior

Let be the associated fundamental solution of the PDE satisfied by . In the case of straight edges, Green's representation theorem leads to

 

 

 

 

(Eq.23)

Due to the orthogonality of the Legendre polynomials, for a given , the integrals in the above representation are Legendre expansion coefficients of certain analytic functions (written in terms of ). Hence the integrals can be computed rapidly (all at once) by expanding the functions in a Chebyshev basis (using the FFT) and then converting to a Legendre basis. [5] This can also be used to approximate the `smooth' part of the solution after adding global singular functions to take care of corner singularities.

Extension to curved boundaries and separable PDEs

The method can be extended to variable coefficient PDEs and curved boundaries in the following manner (see [6] ). Suppose that is a matrix valued function, a vector valued function and a function (all sufficiently smooth) defined over . Consider the formal PDE in divergence form:

 

 

 

 

(Eq.24)

Assume that the domain is a bounded connected Lipschitz domain whose boundary consists of a finite number of vertices connected by arcs. Denote the corners of in anticlockwise order as with the side , joining to . can be parametrised by

where we assume that the parametrisation is .

The adjoint of equation Eq.24 is given by

 

 

 

 

(Eq.25)

The expression Eq.24 Eq.25 can be written in the form

 

 

 

 

(Eq.26)

Integrating across the domain and applying the divergence theorem we recover the global relation ( denotes the outward normal):

 

 

 

 

(Eq.27)

Define along the curve and assume that . Suppose that we have a one-parameter family of solutions of the adjoint equation, , for some , where denotes the collocation set. Denoting the solution alongside by , the unit outward normal by and analogously the oblique derivative by , we define the following important transform:

 

 

 

 

(Eq.28)

Using Eq.28 , the global relation Eq.27 becomes

 

 

 

 

(Eq.29)

For separable PDEs, a suitable one-parameter family of solutions can be constructed. If we expand each and its derivative along the boundary in Legendre polynomials, then we cover a similar approximate global relation as before. To compute the integrals that form the approximate global relation, we can use the same trick as before - expanding the function integrated against Legendre polynomials in a Chebyshev series and then converting to a Legendre series. A major advantage of the method in this scenario is that it is a boundary-based method which does not need any knowledge of the corresponding Green's function. Hence, it is more applicable than boundary integral methods in the setting of variable coefficients.

Singular functions and an exterior scattering problems

A major advantage of the above collocation method is that the basis choice (Legendre polynomials in the above discussion) can be flexibly chosen to capture local properties of the solution along each boundary. This is useful when the solution has different scalings in different regions of , but is particularly useful for capturing singular behavior, for example, near sharp corners of .

We consider the acoustic scattering problem solved in [7] by the method. The solution satisfies Helmholtz equation in with frequency , along with the Sommerfeld radiation condition at infinity:

 

 

 

 

(Eq.30)

where . The boundary condition along the plate is

 

 

 

 

(Eq.31)

for the incident field

 

 

 

 

(Eq.32)

By considering the domains and separately and matching the global relations, the global relation for this problem becomes

 

 

 

 

(Eq.33)

with and where denotes the jump in across the plate. The complex collocation points are allowed precisely because of the radiation condition. To capture the endpoint singularities, we expand for in terms of weighted Chebyshev polynomials of the second kind:

 

 

 

 

(Eq.34)

These have the following Fourier transform:

 

 

 

 

(Eq.35)

where denotes the Bessel function of the first kind of order . For the derivative along , a suitable basis choice are Bessel functions of fractional order (to capture the singularity and algebraic decay at infinity).

We introduce the dimensionless frequency , where is the length of the plate. The figure below shows the convergence of the method for various . Here is the number of basis functions used to approximate the jump across the plate. The maximum relative absolute error is the maximum error of the computed solution divided by the maximum absolute value of the solution. The figure is for and shows the quadratic-exponential convergence of the method, namely the error decreases like for some positive . More complicated geometries (including different angles of touching boundaries and infinite wedges) can also be dealt with in a similar fashion as well as more complicated boundary conditions such as those modeling elasticity. [8] [9]

Convergence results for the method and different
k
~
0
{\displaystyle {\tilde {k}}_{0}}
. Convergence results for the method and different2.jpg
Convergence results for the method and different .

Related Research Articles

Wave equation Second-order linear differential equation important in physics

The wave equation is an important second-order linear partial differential equation for the description of waves—as they occur in classical physics—such as mechanical waves or light waves. It arises in fields like acoustics, electromagnetics, and fluid dynamics.

Standing wave

In physics, a standing wave, also known as a stationary wave, is a wave which oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.

Eigenfunction

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function f in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as

Method of characteristics

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

Nonlinear Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is

Heat kernel Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

Vibrations of a circular membrane

A two-dimensional elastic membrane under tension can support transverse vibrations. The properties of an idealized drumhead can be modeled by the vibrations of a circular membrane of uniform thickness, attached to a rigid frame. Due to the phenomenon of resonance, at certain vibration frequencies, its resonant frequencies, the membrane can store vibrational energy, the surface moving in a characteristic pattern of standing waves. This is called a normal mode. A membrane has an infinite number of these normal modes, starting with a lowest frequency one called the fundamental mode.

In mathematics, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates.

In mathematics, the method of steepest descent or stationary-phase method or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.

Vibration of plates

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This suggests that a two-dimensional plate theory will give an excellent approximation to the actual three-dimensional motion of a plate-like object, and indeed that is found to be true.

In fluid dynamics, a flow with periodic variations is known as pulsatile flow, or as Womersley flow. The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Weyl equation Relativistic wave equation describing massless fermions

In physics, particularly a quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.

Multidimensional seismic data processing forms a major component of seismic profiling, a technique used in geophysical exploration. The technique itself has various applications, including mapping ocean floors, determining the structure of sediments, mapping subsurface currents and hydrocarbon exploration. Since geophysical data obtained in such techniques is a function of both space and time, multidimensional signal processing techniques may be better suited for processing such data.

Stokes problem

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow where Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form. The term Tau function, or -function, was first used systematically by Mikio Sato and his students in the specific context of the Kadomtsev–Petviashvili equation, and related integrable hierarchies. It is a central ingredient in the theory of solitons. Tau functions also appear as matrix model partition functions in the spectral theory of Random Matrices, and may also serve as generating functions, in the sense of combinatorics and enumerative geometry, especially in relation to moduli spaces of Riemann surfaces, and enumeration of branched coverings, or so-called Hurwitz numbers.

References

  1. Deconinck, B.; Trogdon, T.; Vasan, V. (2014-01-01). "The Method of Fokas for Solving Linear Partial Differential Equations". SIAM Review. 56 (1): 159–186. CiteSeerX   10.1.1.454.8462 . doi:10.1137/110821871. ISSN   0036-1445.
  2. 1 2 de Barros, F. P. J.; Colbrook, M. J.; Fokas, A. S. (2019-08-01). "A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line". International Journal of Heat and Mass Transfer. 139: 482–491. doi: 10.1016/j.ijheatmasstransfer.2019.05.018 . ISSN   0017-9310.
  3. Hashemzadeh, P.; Fokas, A. S.; Smitheman, S. A. (2015-03-08). "A numerical technique for linear elliptic partial differential equations in polygonal domains". Proc. R. Soc. A. 471 (2175): 20140747. doi:10.1098/rspa.2014.0747. ISSN   1364-5021. PMC   4353048 . PMID   25792955.
  4. Colbrook, Matthew J.; Flyer, Natasha; Fornberg, Bengt (1 December 2018). "On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains". Journal of Computational Physics. 374: 996–1016. doi:10.1016/j.jcp.2018.08.005. ISSN   0021-9991.
  5. Colbrook, Matthew J.; Fokas, Thanasis S.; Hashemzadeh, Parham (9 April 2019). "A Hybrid Analytical-Numerical Technique for Elliptic PDEs". SIAM Journal on Scientific Computing. 41 (2): A1066–A1090. doi:10.1137/18M1217309.
  6. Colbrook, Matthew J. (27 November 2018). "Extending the unified transform: curvilinear polygons and variable coefficient PDEs". IMA Journal of Numerical Analysis. 40 (2): 976–1004. doi:10.1093/imanum/dry085.
  7. Colbrook, Matthew J.; Ayton, Lorna J.; Fokas, Athanassios S. (28 February 2019). "The unified transform for mixed boundary condition problems in unbounded domains". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 475 (2222): 20180605. doi:10.1098/rspa.2018.0605. PMC   6405447 . PMID   30853842.
  8. Colbrook, Matthew J.; Ayton, Lorna J. (2019). "A spectral collocation method for acoustic scattering by multiple elastic plates". Journal of Sound and Vibration. 461: 114904. doi:10.1016/j.jsv.2019.114904.
  9. Ayton, Lorna J.; Colbrook, Matthew; Fokas, Athanassios (2019). "The Unified Transform: A Spectral Collocation Method for Acoustic Scattering". 25th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2019-2528. ISBN   978-1-62410-588-3.