Forma specialis

Last updated
The hierarchy of biological classification's eight major taxonomic ranks. Intermediate minor rankings are not shown. Biological classification L Pengo vflip.svg DomainKingdomClassOrderFamily
The hierarchy of biological classification's eight major taxonomic ranks. Intermediate minor rankings are not shown.

Forma specialis (plural: formae speciales), abbreviated f. sp. (plural ff. spp.) without italics, is an informal taxonomic grouping allowed by the International Code of Nomenclature for algae, fungi, and plants, [1] that is applied to a parasite (most frequently a fungus) which is adapted to a specific host. This classification may be applied by authors who do not feel that a subspecies or variety name is appropriate, and it is therefore not necessary to specify morphological differences that distinguish this form. The literal meaning of the term is 'special form', but this grouping does not correspond to the more formal botanical use of the taxonomic rank of forma or form.

Contents

An example is Puccinia graminis f. sp. avenae, which affects oats.[ citation needed ]

An alternative term in contexts not related to biological nomenclature is physiological race (sometimes also given as biological race, and in that context treated as synonymous with biological form), [2] [3] except in that the name of a race is added after the binomial scientific name (and may be arbitrary, e.g. an alphanumeric code, usually with the word "race"), e.g. " Podosphaera xanthii race S". [4] A forma specialis is used as part of the infraspecific scientific name (and follows Latin-based scientific naming conventions), inserted after the interpolation "f. sp.", as in the " Puccinia graminis f. sp. avenae" example.

History, and use with "pathotype"

The forma specialis category was introduced and recommended in the International Code of Botanical Nomenclature of 1930, but was not widely adopted. [5] Fungal pathogens within Alternaria alternata species have also been called pathotypes (not to be confused with pathotype as used in bacteriology) by author Syoyo Nishimura [6] who stated:

"[E]ach pathogen should be called a distinct pathotype of A. alternata" [7]

Some authors have subsequently used forma specialis and "pathotype" together for the species A. alternata:

"Currently there are seven pathotypes of A. alternata described ..., but this term is not widely adopted. ... To further standardise the taxonomic terms used, the trinomial system introduced by Rotem (1994) [8] is favoured. When differences in host affinity are observed within the isolates of one ... species, the third epithet, the forma specialis, defines the affinity to this specific host in accordance with the produced toxin causing this affinity. When different toxins are produced on the same host, but these toxins affect different host species, the term pathotype should be used in addition. All isolates which are not confined to specific hosts and / or toxins should retain only the binomial name until such specificity is found." [9]

See also

Related Research Articles

Subspecies Taxonomic rank subordinate to species

In biological classification, the term subspecies refers to one of two or more populations of a species living in different subdivisions of the species' range and varying from one another by morphological characteristics. A single subspecies cannot be recognized independently: a species is either recognized as having no subspecies at all or at least two, including any that are extinct. The term may be abbreviated to subsp. or ssp. The plural is the same as the singular: subspecies.

<i>Fusarium oxysporum</i> Species of fungus

Fusarium oxysporumpronounce , an ascomycete fungus, comprises all the species, varieties and forms recognized by Wollenweber and Reinking within an infrageneric grouping called section Elegans. It is part of the family Nectriaceae.

Form (botany) One of the secondary taxonomic ranks, below that of variety, in botanical nomenclature

In botanical nomenclature, a form is one of the "secondary" taxonomic ranks, below that of variety, which in turn is below that of species; it is an infraspecific taxon. If more than three ranks are listed in describing a taxon, the "classification" is being specified, but only three parts make up the "name" of the taxon: a genus name, a specific epithet, and an infraspecific epithet.

Powdery mildew Fungal plant disease

Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as its symptoms are quite distinctive. Infected plants display white powdery spots on the leaves and stems. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.

Fusarium wilt Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

Phytoalexin

Phytoalexins are antimicrobial substances, some of which are antioxidative as well. They are defined, not by their having any particular chemical structure or character, but by the fact that they are defensively synthesized de novo by plants that produce the compounds rapidly at sites of pathogen infection. In general phytoalexins are broad spectrum inhibitors; they are chemically diverse, and different chemical classes of compounds are characteristic of particular plant taxa. Phytoalexins tend to fall into several chemical classes, including terpenoids, glycosteroids and alkaloids, however the term applies to any phytochemicals that are induced by microbial infection.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

Race (biology) Informal rank in the taxonomic hierarchy, below the level of subspecies

In biological taxonomy, race is an informal rank in the taxonomic hierarchy for which various definitions exist. Sometimes it is used to denote a level below that of subspecies, while at other times it is used as a synonym for subspecies. It has been used as a higher rank than strain, with several strains making up one race. Races may be genetically distinct populations of individuals within the same species, or they may be defined in other ways, e.g. geographically, or physiologically. Genetic isolation between races is not complete, but genetic differences may have accumulated that are not (yet) sufficient to separate species.

In botany, an infraspecific name is the scientific name for any taxon below the rank of species, i.e. an infraspecific taxon or infraspecies. The scientific names of botanical taxa are regulated by the International Code of Nomenclature for algae, fungi, and plants (ICN). This specifies a 'three part name' for infraspecific taxa, plus a 'connecting term' to indicate the rank of the name. An example of such a name is Astrophytum myriostigma subvar. glabrum, the name of a subvariety of the species Astrophytum myriostigma.

Stem rust Cereal disease on wheat, barley, oats...

Stem rust, also known as cereal rust, black rust, red rust or red dust, is caused by the fungus Puccinia graminis, which causes significant disease in cereal crops. Crop species that are affected by the disease include bread wheat, durum wheat, barley and triticale. These diseases have affected cereal farming throughout history. The annual recurrence of stem rust of wheat in North Indian plains was discovered by Prof. K.C. Mehta. Since the 1950s, wheat strains bred to be resistant to stem rust have become available. Fungicides effective against stem rust are available as well.

Wheat leaf rust Fungal disease, of wheat, most prevalent

Wheat leaf rust is a fungal disease that affects wheat, barley, rye stems, leaves and grains. In temperate zones it is destructive on winter wheat because the pathogen overwinters. Infections can lead up to 20% yield loss, which is exacerbated by dying leaves, which fertilize the fungus. The pathogen is a Puccinia rust fungus. It is the most prevalent of all the wheat rust diseases, occurring in most wheat-growing regions. It causes serious epidemics in North America, Mexico and South America and is a devastating seasonal disease in India. P. triticina is heteroecious, requiring two distinct hosts.

<i>Pneumocystis jirovecii</i> Species of fungus

Pneumocystis jirovecii is a yeast-like fungus of the genus Pneumocystis. The causative organism of Pneumocystis pneumonia, it is an important human pathogen, particularly among immunocompromised hosts. Prior to its discovery as a human-specific pathogen, P. jirovecii was known as P. carinii.

This is a glossary of some of the terms used in phytopathology.

Ug99 Strain of fungus

Ug99 is a lineage of wheat stem rust, which is present in wheat fields in several countries in Africa and the Middle East and is predicted to spread rapidly through these regions and possibly further afield, potentially causing a wheat production disaster that would affect food security worldwide. In 2005 the noted green revolution pioneer Norman Borlaug brought great attention to the problem, and most subsequent efforts can be traced to his advocacy. It can cause up to 100% crop losses and is virulent against many resistance genes which have previously protected wheat against stem rust.

<i>Alternaria alternata</i> Species of fungus

Alternaria alternata is a fungus which has been recorded causing leaf spot and other diseases on over 380 host species of plant. It is an opportunistic pathogen on numerous hosts causing leaf spots, rots and blights on many plant parts.

Alternaria citri is a fungal plant pathogen that causes black rot in citrus plants.

Alternaria dauci is a plant pathogen. The English name of the disease it incites is "carrot leaf blight".

<i>Puccinia coronata</i> Species of fungus

Puccinia coronata is a plant pathogen and causal agent of oat and barley crown rust. The pathogen occurs worldwide, infecting both wild and cultivated oats. Crown rust poses a threat to barley production, because the first infections in barley occur early in the season from local inoculum. Crown rusts have evolved many different physiological races within different species in response to host resistance. Each pathogenic race can attack a specific line of plants within the species typical host. For example, there are over 290 races of P. coronata. Crops with resistant phenotypes are often released, but within a few years virulent races have arisen and P. coronata can infect them.

Telium

Telium, plural telia, are structures produced by rust fungi as part of the reproductive cycle. They are typically yellow or orange drying to brown or black and are exclusively a mechanism for the release of teliospores which are released by wind or water to infect the alternate host in the rust life-cycle. The telial stage provides an overwintering strategy in the life cycle of a parasitic heteroecious fungus by producing teliospores; this occurs on cedar trees. A primary aecial stage is spent parasitizing a separate host plant which is a precursor in the life cycle of heteroecious fungi. Teliospores are released from the telia in the spring. The spores can spread many kilometers through the air, however most are spread near the host plant.

Ruth Florence Allen (1879–1963) was an American botanist and plant pathologist and the first woman to earn her Ph.D. in botany from the University of Wisconsin. Her doctorate research focused on the reproduction and cell biology of ferns, particularly the phenomenon of apogamy. Later in her career, Allen shifted her focus to plant pathology. Her major contribution to the field of mycology was furthering the understanding of rust fungi, a group of economically important plant pathogens. Allen completed many studies on Puccinia graminis, once considered a catastrophically damaging disease-causing agent in cereal crops before the discovery of current management measures.

References

  1. McNeill, J.; Barrie, F.R.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Marhold, K.; Prado, J.; Prud'homme Van Reine, W.F.; Smith, G.F.; Wiersema, J.H.; Turland, N.J. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Vol. Regnum Vegetabile 154. A.R.G. Gantner Verlag KG. ISBN   978-3-87429-425-6. Chapter I. Article 4.4. Note 4.
  2. Walker, Peter M. B., ed. (2004) [1999]. "Biological form". Chambers Dictionary of Science and Technology. Edinburgh / New Delhi: Chambers Harrap / Allied Chambers. Previously: The Wordsworth Dictionary of Science and Technology. W. R. Chambers / Cambridge U. Pr. 1998.
  3. Walker, Peter M. B., ed. (2004) [1999]. "Biological race". Chambers Dictionary of Science and Technology. Edinburgh / New Delhi: Chambers Harrap / Allied Chambers. Previously: The Wordsworth Dictionary of Science and Technology. W. R. Chambers / Cambridge U. Pr. 1998.
  4. Cohen, R.; Burger, Y.; Katzir, N. (2004). "Monitoring Physiological races of Podosphaera xanthii (syn. Sphaerotheca fuliginea), the Causal Agent of Powdery Mildew in Curcubits: Factors Affecting Race Identification and the Importance for Research and Commerce". Phythoparasitica. 32 (2): 174–183. doi:10.1007/bf02979784. S2CID   27174422.
  5. Hagborg, W.A.F. (1942), "Classification revision in Xanthomonas translucens", Canadian Journal of Research, 20c (5): 312–326, doi:10.1139/cjr42c-028
  6. Nishimura, S.; Kohmoto, K. (1983), "Host-Specific Toxins and Chemical Structures from Alternaria Species", Annual Review of Phytopathology, 21 (1): 87–116, doi:10.1146/annurev.py.21.090183.000511, PMID   25946338
  7. Nishimura, Syoyo (1980), "Host Specific Toxins from Alternaria alternata: Problems and Prospects", Proceedings of the Japan Academy, Series B, 56 (6): 362–366, Bibcode:1980PJAB...56..362N, doi: 10.2183/pjab.56.362
  8. Rotem, J. (1994), The Genus Alternaria: Biology, Epidemiology and Pathogenicity (as cited by Woudenberg et al. 2015), APS Press, American Phytopathological Society, ISBN   9780890541524
  9. Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. (2015), "Alternaria section Alternaria: Species, formae speciales or pathotypes?", Studies in Mycology, 82: 1–21, doi:10.1016/j.simyco.2015.07.001, PMC   4774270 , PMID   26951037