Fractional coordinates

Last updated

In crystallography, a fractional coordinate system (crystal coordinate system) is a coordinate system in which basis vectors used to the describe the space are the lattice vectors of a crystal (periodic) pattern. The selection of an origin and a basis define a unit cell, a parallelotope (i.e., generalization of a parallelogram (2D) or parallelepiped (3D) in higher dimensions) defined by the lattice basis vectors where is the dimension of the space. These basis vectors are described by lattice parameters (lattice constants) consisting of the lengths of the lattice basis vectors and the angles between them .

Contents

Most cases in crystallography involve two- or three-dimensional space. In the three-dimensional case, the basis vectors are commonly displayed as with their lengths denoted by respectively, and the angles denoted by , where conventionally, is the angle between and , is the angle between and , and is the angle between and .

A unit cell in 3-dimensions (shown in dashed lines) defined by the three lattice basis vectors
a
1
{\displaystyle \mathbf {a} _{1}}
,
a
2
{\displaystyle \mathbf {a} _{2}}
, and
a
3
{\displaystyle \mathbf {a} _{3}}
shown within a Cartesian coordinate system. Crystal Coordinates.png
A unit cell in 3-dimensions (shown in dashed lines) defined by the three lattice basis vectors , , and shown within a Cartesian coordinate system.

Crystal Structure

A crystal structure is defined as the spatial distribution of the atoms within a crystal, usually modeled by the idea of an infinite crystal pattern. An infinite crystal pattern refers to the infinite 3D periodic array which corresponds to a crystal, in which the lengths of the periodicities of the array may not be made arbitrarily small. The geometrical shift which takes a crystal structure coincident with itself is termed a symmetry translation (translation) of the crystal structure. The vector which is related to this shift is called a translation vector. Since a crystal pattern is periodic, all integer linear combinations of translation vectors are also themselves translation vectors, [1]

Lattice

The vector lattice (lattice) is defined as the infinite set consisting of all of the translation vectors of a crystal pattern. Each of the vectors in the vector lattice are called lattice vectors. From the vector lattice it is possible to construct a point lattice. This is done by selecting an origin with position vector . The endpoints of each of the vectors make up the point lattice of and . Each point in a point lattice has periodicity i.e., each point is identical and has the same surroundings. There exist an infinite number of point lattices for a given vector lattice as any arbitrary origin can be chosen and paired with the lattice vectors of the vector lattice. The points or particles that are made coincident with one another through a translation are called translation equivalent. [1]

Coordinate systems

General coordinate systems

Usually when describing a space geometrically, a coordinate system is used which consists of a choice of origin and a basis of linearly independent, non-coplanar basis vectors , where is the dimension of the space being described. With reference to this coordinate system, each point in the space can be specified by coordinates (a coordinate -tuple). The origin has coordinates and an arbitrary point has coordinates . The position vector is then,

In -dimensions, the lengths of the basis vectors are denoted and the angles between them . However, most cases in crystallography involve two- or three-dimensional space in which the basis vectors are commonly displayed as with their lengths and angles denoted by and respectively.

Cartesian coordinate system

A widely used coordinate system is the Cartesian coordinate system, which consists of orthonormal basis vectors. This means that,

and

However, when describing objects with crystalline or periodic structure a Cartesian coordinate system is often not the most useful as it does not often reflect the symmetry of the lattice in the simplest manner. [1]

Fractional (crystal) coordinate system

In crystallography, a fractional coordinate system is used in order to better reflect the symmetry of the underlying lattice of a crystal pattern (or any other periodic pattern in space). In a fractional coordinate system the basis vectors of the coordinate system are chosen to be lattice vectors and the basis is then termed a crystallographic basis (or lattice basis).

In a lattice basis, any lattice vector can be represented as,

There are an infinite number of lattice bases for a crystal pattern. However, these can be chosen in such a way that the simplest description of the pattern can be obtained. These bases are used in the International Tables of Crystallography Volume A and are termed conventional bases. A lattice basis is called primitive if the basis vectors are lattice vectors and all lattice vectors can be expressed as,

However, the conventional basis for a crystal pattern is not always chosen to be primitive. Instead, it is chosen so the number of orthogonal basis vectors is maximized. This results in some of the coefficients of the equations above being fractional. A lattice in which the conventional basis is primitive is called a primitive lattice, while a lattice with a non-primitive conventional basis is called a centered lattice.

The choice of an origin and a basis implies the choice of a unit cell which can further be used to describe a crystal pattern. The unit cell is defined as the parallelotope (i.e., generalization of a parallelogram (2D) or parallelepiped (3D) in higher dimensions) in which the coordinates of all points are such that, .

Furthermore, points outside of the unit cell can be transformed inside of the unit cell through standardization, the addition or subtraction of integers to the coordinates of points to ensure . In a fractional coordinate system, the lengths of the basis vectors and the angles between them are called the lattice parameters (lattice constants) of the lattice. In two- and three-dimensions, these correspond to the lengths and angles between the edges of the unit cell. [1]

The fractional coordinates of a point in space in terms of the lattice basis vectors is defined as,

Calculations involving the unit cell

General transformations between fractional and Cartesian coordinates

Three Dimensions

The relationship between fractional and Cartesian coordinates can be described by the matrix transformation : [2]

Similarly, the Cartesian coordinates can be converted back to fractional coordinates using the matrix transformation : [2]

Transformations using the cell tensor

Another common method of converting between fractional and Cartesian coordinates involves the use of a cell tensor which contains each of the basis vectors of the space expressed in Cartesian coordinates.

Two Dimensions

Cell tensor

In Cartesian coordinates the 2 basis vectors are represented by a cell tensor: [3]

The area of the unit cell, , is given by the determinant of the cell matrix:

For the special case of a square or rectangular unit cell, the matrix is diagonal, and we have that:

Relationship between fractional and Cartesian coordinates

The relationship between fractional and Cartesian coordinates can be described by the matrix transformation : [3]

Similarly, the Cartesian coordinates can be converted back to fractional coordinates using the matrix transformation : [3]

Three Dimensions

Cell tensor

In Cartesian coordinates the 3 basis vectors are represented by a cell tensor: [3]

The volume of the unit cell, , is given by the determinant of the cell tensor:

For the special case of a cubic, tetragonal, or orthorhombic cell, the matrix is diagonal, and we have that:

Relationship between fractional and Cartesian coordinates

The relationship between fractional and Cartesian coordinates can be described by the matrix transformation : [3]

Similarly, the Cartesian coordinates can be converted back to fractional coordinates using the matrix transformation : [3]

Arbitrary number of dimensions

Cell tensor

In Cartesian coordinates the basis vectors are represented by a cell tensor: [3]

The hypervolume of the unit cell, , is given by the determinant of the cell tensor:

Relationship between fractional and Cartesian coordinates

The relationship between fractional and Cartesian coordinates can be described by the matrix transformation : [3]

Similarly, the Cartesian coordinates can be converted back to fractional coordinates using the transformation : [3]

Determination of cell properties in two and three dimensions using the metric tensor

The metric tensor is sometimes used for calculations involving the unit cell and is defined (in matrix form) as: [1]

In two dimensions,

In three dimensions,

The distance between two points and in the unit cell can be determined from the relation: [1]

The distance from the origin of the unit cell to a point within the unit cell can be determined from the relation: [1]

The angle formed from three points , (apex), and within the unit cell can determined from the relation: [1]

The volume of the unit cell, can be determined from the relation: [1]

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

<span class="mw-page-title-main">Vector fields in cylindrical and spherical coordinates</span> Vector field representation in 3D curvilinear coordinate systems

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.

<span class="mw-page-title-main">Barycentric coordinate system</span> Coordinate system that is defined by points instead of vectors

In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex. The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Cartesian tensor</span>

In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is done through an orthogonal transformation.

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

In classical mechanics, the Udwadia–Kalaba formulation is a method for deriving the equations of motion of a constrained mechanical system. The method was first described by Vereshchagin for the particular case of robotic arms, and later generalized to all mechanical systems by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The approach is based on Gauss's principle of least constraint. The Udwadia–Kalaba method applies to both holonomic constraints and nonholonomic constraints, as long as they are linear with respect to the accelerations. The method generalizes to constraint forces that do not obey D'Alembert's principle.

In analytical mechanics, the mass matrix is a symmetric matrix M that expresses the connection between the time derivative of the generalized coordinate vector q of a system and the kinetic energy T of that system, by the equation

References

  1. 1 2 3 4 5 6 7 8 9 Müller, Ulrich, July 6- (2013). Symmetry relationships between crystal structures : applications of crystallographic group theory in crystal chemistry. Oxford: Oxford University Press. ISBN   978-0-19-164879-3. OCLC   850179696.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 McKie, Duncan (1986). Essentials of crystallography. Christine McKie. Oxford: Blackwell Scientific. ISBN   0-632-01566-7. OCLC   14131056.
  3. 1 2 3 4 5 6 7 8 9 Alavi, Saman (2020). Molecular Simulations Fundamentals and Practice. Wiley-VCH (1. Auflage ed.). Weinheim. ISBN   978-3-527-34105-4. OCLC   1128103696.{{cite book}}: CS1 maint: location missing publisher (link)