Frequency averaging

Last updated

In telecommunication, the term frequency averaging has the following meanings:

Telecommunication transmission of information between locations using electromagnetics

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted either electrically over physical media, such as cables, or via electromagnetic radiation. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

  1. The process by which the relative phases of precision clocks are compared for the purpose of defining a single time standard.
  2. A process in which network synchronization is achieved by use, at all nodes, of oscillators that adjust their frequencies to the average frequency of the digital bit streams received from connected nodes.

In frequency averaging, all oscillators are assigned equal weight in determining the ultimate network frequency.

In terms of musical note frequency, the averaging of the frequency of low or high notes in a solo instrumental piece is a technique used to match different instruments together so they may be played together. The musical note frequency calculation formula is used: F=(2^12/n)*440, where n equals the number of positive or negative steps away from the base note of A4(440 hertz) and F equals the frequency. The formula is used in calculating the frequency of each note in the piece. The values are then added together and divided by the number of notes. This is the average frequency of those notes. It is said that such techniques were used by classical composers, especially those who involved mathematics heavily in their music.

Related Research Articles

Huffman coding entropy encoding algorithm used for lossless data compression

In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression. The process of finding and/or using such a code proceeds by means of Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".

Musical note sign used in musical notation, a pitched sound

In music, a note is the pitch and duration of a sound, and also its representation in musical notation. A note can also represent a pitch class. Notes are the building blocks of much written music: discretizations of musical phenomena that facilitate performance, comprehension, and analysis.

Superheterodyne receiver radio receiver; uses frequency mixing to convert a received signal to a fixed intermediate frequency which can be more conveniently processed than the original carrier frequency;virtually all modern radio receivers use the superheterodyne principle

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by US engineer Edwin Armstrong in 1918 during World War I. Virtually all modern radio receivers use the superheterodyne principle.

Tuning fork device used to produce a fixed tone

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal. It resonates at a specific constant pitch when set vibrating by striking it against a surface or with an object, and emits a pure musical tone once the high overtones fade out. A tuning fork's pitch depends on the length and mass of the two prongs. They are traditional sources of standard pitch for tuning musical instruments.

In music, an octave or perfect octave is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". The interval between the first and second harmonics of the harmonic series is an octave.

Allan variance

The Allan variance (AVAR), also known as two-sample variance, is a measure of frequency stability in clocks, oscillators and amplifiers, named after David W. Allan and expressed mathematically as . The Allan deviation (ADEV), also known as sigma-tau, is the square root of Allan variance, .

Harmonic

A harmonic is any member of the harmonic series. The term is employed in various disciplines, including music, physics, acoustics, electronic power transmission, radio technology, and other fields. It is typically applied to repeating signals, such as sinusoidal waves. A harmonic of such a wave is a wave with a frequency that is a positive integer multiple of the frequency of the original wave, known as the fundamental frequency. The original wave is also called the 1st harmonic, the following harmonics are known as higher harmonics. As all harmonics are periodic at the fundamental frequency, the sum of harmonics is also periodic at that frequency. For example, if the fundamental frequency is 50 Hz, a common AC power supply frequency, the frequencies of the first three higher harmonics are 100 Hz, 150 Hz, 200 Hz and any addition of waves with these frequencies is periodic at 50 Hz.

An nth characteristic mode, for n > 1, will have nodes that are not vibrating. For example, the 3rd characteristic mode will have nodes at L and L, where L is the length of the string. In fact, each nth characteristic mode, for n not a multiple of 3, will not have nodes at these points. These other characteristic modes will be vibrating at the positions L and L. If the player gently touches one of these positions, then these other characteristic modes will be suppressed. The tonal harmonics from these other characteristic modes will then also be suppressed. Consequently, the tonal harmonics from the nth characteristic modes, where n is a multiple of 3, will be made relatively more prominent.

Resonance phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at specific frequencies

In mechanical systems, resonance is a phenomenon that occurs when the frequency at which a force is periodically applied is equal or nearly equal to one of the natural frequencies of the system on which it acts. This causes the system to oscillate with larger amplitude than when the force is applied at other frequencies.

Pitch (music) perceptual property in music

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch can be determined only in sounds that have a frequency that is clear and stable enough to distinguish from noise. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

A variable frequency oscillator (VFO) in electronics is an oscillator whose frequency can be tuned over some range. It is a necessary component in any tunable radio receiver or transmitter that works by the superheterodyne principle, and controls the frequency to which the apparatus is tuned.

Normal mode pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation

A normal mode of an oscillating system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at the fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions. When relating to music, normal modes of vibrating instruments are called "harmonics" or "overtones".

Scientific pitch notation

Scientific pitch notation is a method of specifying musical pitch by combining a musical note name and a number identifying the pitch's octave.

Linear electronic oscillator circuits, which generate a sinusoidal output signal, are composed of an amplifier and a frequency selective element, a filter. A linear oscillator circuit which uses an RC network, a combination of resistors and capacitors, for its frequency selective part is called an RC oscillator.

This is a list of the fundamental frequencies in hertz (cycles per second) of the keys of a modern 88-key standard or 108-key extended piano in twelve-tone equal temperament, with the 49th key, the fifth A (called A4), tuned to 440 Hz (referred to as A440). Since every octave is made of twelve steps and equals two times the frequency (for example, the fifth A is 440 Hz and the higher octave A is 880 Hz), each successive pitch is derived by multiplying (ascending) or dividing (descending) the previous by the twelfth root of two (approximately 1.059463). For example, to get the frequency a semitone up from A4 (A4), multiply 440 by the twelfth root of two. To go from A4 to B4 (up a whole tone, or two semitones), multiply 440 twice by the twelfth root of two (or just by the sixth root of two, approximately 1.122462). For other tuning schemes refer to musical tuning.

Acoustic resonance phenomenon where acoustic systems amplify sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies)

Acoustic resonance is a phenomenon where acoustic systems amplify sound waves whose frequency matches one of its own natural frequencies of vibration.

MIDI Tuning Standard (MTS) is a specification of precise musical pitch agreed to by the MIDI Manufacturers Association in the MIDI protocol. MTS allows for both a bulk tuning dump message, giving a tuning for each of 128 notes, and a tuning message for individual notes as they are played.

Music and mathematics

Music theory has no axiomatic foundation in modern mathematics, yet the basis of musical sound can be described mathematically and exhibits "a remarkable array of number properties". Elements of music such as its form, rhythm and metre, the pitches of its notes and the tempo of its pulse can be related to the measurement of time and frequency, offering ready analogies in geometry.

In music, the undertone series or subharmonic series is a sequence of notes that results from inverting the intervals of the overtone series. While overtones naturally occur with the physical production of music on instruments, undertones must be produced in unusual ways. While the overtone series is based upon arithmetic multiplication of frequencies, resulting in a harmonic series, the undertone series is based on arithmetic division.

String harmonic

A string harmonic is a string instrument technique which uses the nodes of natural harmonics of a musical string to produce high pitched tones of varying timbre and loudness. String harmonics are "high pitched tones, like a whistle's, are produced when the musician lightly touches certain points on a string." "A flute-like sound produced on a string instrument by lightly touching the string with the finger instead of pressing it down," against the fingerboard.

Synchronization networks are also often known as "networks of coupled dynamical systems". Both of these refer to networks connecting oscillators, where oscillators are nodes that emit a signal with somewhat regular frequency, and are also capable of receiving a signal.

References

General Services Administration United States government agency

The General Services Administration (GSA), an independent agency of the United States government, was established in 1949 to help manage and support the basic functioning of federal agencies. GSA supplies products and communications for U.S. government offices, provides transportation and office space to federal employees, and develops government-wide cost-minimizing policies and other management tasks.

MIL-STD-188 series of U.S. military standards relating to telecommunications

MIL-STD-188 is a series of U.S. military standards relating to telecommunications.