Fusion for Energy

Last updated

European Joint Undertaking for ITER and the Development of Fusion Energy
Fusion for Energy (F4E)
Logo of Fusion for Energy.jpg
Joint undertaking overview
FormedMarch 27, 2007 (2007-03-27)
Jurisdiction European Atomic Energy Community (European Union)
Headquartersc/ Josep Pla, nº 2
Torres Diagonal Litoral
Edificio B3
08019 Barcelona
Spain
41°24′30″N2°13′08″E / 41.408310°N 2.218846°E / 41.408310; 2.218846
Joint undertaking executive
  • Marc Lachaise, Director
Key document
Website fusionforenergy.europa.eu
Fusion for Energy

Fusion for Energy(F4E) is a joint undertaking of the European Atomic Energy Community (Euratom) that is responsible for the EU's contribution to the International Thermonuclear Experimental Reactor (ITER), the world's largest scientific partnership aiming to demonstrate fusion as a viable and sustainable source of energy. The organisation is officially named European Joint Undertaking for ITER and the Development of Fusion Energy and was created under article 45 of the Treaty establishing the European Atomic Energy Community by the decision of the Council of the European Union on 27 March 2007 for a period of 35 years. [1]

Contents

F4E counts 450 members of staff. Its seat is located in Barcelona, Spain, and it has offices in Saint-Paul-lès-Durance, France, and Garching, Germany. One of its main tasks is to work together with European industry and research organisations to develop and provide a wide range of high technology components for the ITER project.

Mission and governance

The European Union is the host party for the ITER project. Its contribution amounts to 45%, while the other six parties have an in-kind contribution of approximately 9% each. Since 2008, F4E has been collaborating with at least 440 companies and more than 65 R&D organisations. [2]

F4E's primary mission is to manage the European contribution to the ITER project; therefore it provides financial funds, which mostly come from the European Community budget. [3] Among other tasks, F4E oversees the preparation of the ITER construction site in Saint-Paul-lès-Durance, in France. F4E is formed by Euratom (represented by the European Commission), the Member States of the European Union and Switzerland, which participates as a third country. [4] To ensure the overall supervision of its activities, the members sit on a governing board, which has a wide range of responsibilities including appointing the director.

Difficulties

A report by the consultancy Ernst & Young published in 2013 by the European Parliament's Budgetary Control Committee found that F4E had suffered from significant management difficulties. According to the report, "the organisation faced a series of internal problems that have only been gradually addressed, notably an organisational structure ill-adapted for project-oriented activities." [2] From 2010, a host of reforms were undertaken within F4E, including a reshuffling and reorientation of the governance and management structures, as well as a cost-savings programme. [2]

Projects

Fusion is the process which powers the sun, producing energy by fusing together light atoms such as hydrogen at extremely high pressures and temperatures. Fusion reactors use two forms of hydrogen, deuterium and tritium, as fuel.

The benefits of fusion energy are that it is an inherently safe process and it does not create greenhouse gases or long-lasting radioactive waste. [5]

ITER

ITER, meaning "the way" in Latin, is an international experiment aiming to demonstrate the scientific and technical feasibility of fusion as an energy source. [6] The machine is being constructed in Saint-Paul-lès-Durance in the South of France and is funded by seven parties: China, the European Union, India, Japan, Russia, South Korea and the United States. Collectively, the parties taking part in the ITER project represent over one half of the world's population and 80% of the global GDP. [7]

The DEMO project

F4E also aims to contribute to DEMO (Demonstration Power Plant). This experiment is supposed to generate significant amounts of electricity over extended periods and will be self-sufficient in tritium, one of the necessary gases to create fusion. The first commercial fusion electricity power plants are set to be established following DEMO, which is set to be larger in size than ITER and to produce significantly larger fusion power over long periods: a continuous production of up to 500 megawatts of electricity.

Broader Approach activities

The Broader Approach (BA) activities are three research projects carried out under an agreement between the European Atomic Energy Community (Euratom) and Japan, which contribute equally financially. They are meant to complement the ITER project and accelerate the development of fusion energy through R&D by cooperating on a number of projects of mutual interest. [8]

This agreement entered into force on 1 June 2007 and runs for at least 10 years. The Broader Approach consists of three main projects located in Japan: the Satellite Tokamak Programme project JT-60SA (super advanced), the International Fusion Materials Irradiation Facility / Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) and the International Fusion Energy Research Centre (IFERC). [8]

See also

Related Research Articles

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field generated by external magnets to confine plasma in the shape of an axially-symmetrical torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. The tokamak concept is currently one of the leading candidates for a practical fusion reactor.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

The European School, Culham (ESC) was one of the fourteen European Schools and the only one in the United Kingdom. Located in Culham near Abingdon in Oxfordshire. It was founded in 1978 for the purpose of providing an education to the children of staff working for the European Atomic Energy Community (Euratom).

<span class="mw-page-title-main">Euratom</span> International organisation

The European Atomic Energy Community is an international organisation established by the Euratom Treaty on 25 March 1957 with the original purpose of creating a specialist market for nuclear power in Europe, by developing nuclear energy and distributing it to its member states while selling the surplus to non-member states. However, over the years its scope has been considerably increased to cover a large variety of areas associated with nuclear power and ionising radiation as diverse as safeguarding of nuclear materials, radiation protection and construction of the International Fusion Reactor ITER.

<span class="mw-page-title-main">Joint European Torus</span> Facility in Oxford, United Kingdom

The Joint European Torus (JET) was a magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility was a joint European project with the main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today.

<span class="mw-page-title-main">Nuclear Energy Agency</span> Intergovernmental agency under the OECD

The Nuclear Energy Agency (NEA) is an intergovernmental agency that is organized under the Organisation for Economic Co-operation and Development (OECD). Originally formed on 1 February 1958 with the name European Nuclear Energy Agency (ENEA)—the United States participated as an Associate Member—the name was changed on 20 April 1972 to its current name after Japan became a member.

<span class="mw-page-title-main">United Kingdom Atomic Energy Authority</span> UK government research organisation

The United Kingdom Atomic Energy Authority is a UK government research organisation responsible for the development of fusion energy. It is an executive non-departmental public body of the Department for Energy Security and Net Zero (DESNZ).

JT-60 is a large research tokamak, the flagship of the Japanese National Institute for Quantum Science and Technology's fusion energy directorate. As of 2023 the device is known as JT-60SA and is the largest operational superconducting tokamak in the world, built and operated jointly by the European Union and Japan in Naka, Ibaraki Prefecture. SA stands for super advanced tokamak, including a D-shaped plasma cross-section, superconducting coils, and active feedback control.

<span class="mw-page-title-main">Cadarache</span> Technological research and development center

Cadarache is the largest technological research and development centre for energy in Europe. It includes the CEA research activities and ITER. CEA Cadarache is one of the 10 research centres of the French Commission of Atomic and Alternative Energies.

<span class="mw-page-title-main">DEMOnstration Power Plant</span> Planned fusion facility

DEMO, or a demonstration power plant, refers to a proposed class of nuclear fusion experimental reactors that are intended to demonstrate the net production of electric power from nuclear fusion. Most of the ITER partners have plans for their own DEMO-class reactors. With the possible exception of the EU and Japan, there are no plans for international collaboration as there was with ITER.

EFDA has been followed by EUROfusion, which is a consortium of national fusion research institutes located in the European Union and Switzerland.

Ignitor is the Italian name for a planned tokamak device, developed by ENEA. As of 2022, the device has not been constructed.

<span class="mw-page-title-main">Culham Centre for Fusion Energy</span> UKs national laboratory for controlled fusion research

The Culham Centre for Fusion Energy (CCFE) is the UK's national laboratory for fusion research. It is located at the Culham Science Centre, near Culham, Oxfordshire, and is the site of the Joint European Torus (JET), Mega Ampere Spherical Tokamak (MAST) and the now closed Small Tight Aspect Ratio Tokamak (START).

<span class="mw-page-title-main">Plasma-facing material</span>

In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.

EUROfusion is a consortium of national fusion research institutes located in the European Union, the UK, Switzerland and Ukraine. It was established in 2014 to succeed the European Fusion Development Agreement (EFDA) as the umbrella organisation of Europe's fusion research laboratories. The consortium is currently funded by the Euratom Horizon 2020 programme.

Spherical Tokamak for Energy Production (STEP) is a spherical tokamak fusion plant concept proposed by the United Kingdom Atomic Energy Authority (UKAEA) and funded by UK government. The project is a proposed DEMO-class successor device to the ITER tokamak proof-of-concept of a fusion plant, the most advanced tokamak fusion reactor to date, which is scheduled to achieve a 'burning plasma' in 2035. STEP aims to produce net electricity from fusion on a timescale of 2040. Jacob Rees-Mogg, the UK Secretary of State for Business, Energy and Industrial Strategy, announced West Burton A power station in Nottinghamshire as its site on 3 October 2022 during the Conservative Party Conference. A coal-fired power station at the site ceased production a few days earlier. The reactor is planned to have a 100 MW electrical output and be tritium self-sufficient via fuel breeding.

<span class="mw-page-title-main">European Schools</span>

The European Schools is an intergovernmental organisation, which has established, financed, and administered a small group of multilingual international schools, bearing the title "European School", which exist primarily to offer an education to the children of European Union (EU) staff; offers accreditation to other schools, bearing the title "Accredited European School", under national jurisdiction within EU member states to provide its curriculum; and oversees the provision of the secondary school leaving diploma, the European Baccalaureate.

Donato Palumbo was an Italian physicist best known as the leader of the European Atomic Energy Community (Euratom) fusion research program from its formation in 1958 to his retirement in 1986. He was a key force in the development of the tokamak during the 1970s and 80s, contributing several papers on plasma confinement in these devices and leading the JET fusion reactor program, which as of 2021, retains the record for the closest approach to breakeven, the ratio between the produced fusion power and the power used to heat it. He is referred to as the founding father of the European fusion program.

References

  1. European Council (30 March 2007). "COUNCIL DECISION of 27 March 2007 establishing the European Joint Undertaking for ITER and the Development of Fusion Energy and conferring advantages upon it". Official Journal of the European Union. L98: 50–72. Retrieved 30 June 2013.
  2. 1 2 3 "Potential for reorganisation within the ITER project to improve cost-effectiveness" (PDF). Budgetary Control Committee of the European Parliament. 27 May 2014. Retrieved 30 June 2013.
  3. "Publication of the final accounts for the financial year 2017" (PDF). fusionforenergy.europa.eu. Retrieved 11 December 2018.
  4. "Switzerland officializes ITER participation". www.iter.org. 29 May 2009. Retrieved 1 May 2014.
  5. Conn, R. W.; et al. (1990). Fusion reactor economic, safety and environmental prospects. New York: Plenum Press.
  6. "ITER – the way to new energy". ITER. Archived from the original on 7 November 2017. Retrieved 16 October 2015.
  7. "ITER takes next step towards nuclear fusion energy". The Manufacturer. Retrieved 16 October 2015.
  8. 1 2 "Agreement between the European Atomic Energy Community and the Government of Japan for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research" (PDF). fusionforenergy.europa.eu. 2007. Retrieved 11 December 2018.