GLR parser

Last updated

A GLR parser (generalized left-to-right rightmost derivation parser) is an extension of an LR parser algorithm to handle non-deterministic and ambiguous grammars. [1] The theoretical foundation was provided in a 1974 paper [2] by Bernard Lang (along with other general context-free parsers such as GLL). It describes a systematic way to produce such algorithms, and provides uniform results regarding correctness proofs, complexity with respect to grammar classes, and optimization techniques. The first actual implementation of GLR was described in a 1984 paper by Masaru Tomita, it has also been referred to as a "parallel parser". Tomita presented five stages in his original work, [3] though in practice it is the second stage that is recognized as the GLR parser.

Contents

Though the algorithm has evolved since its original forms, the principles have remained intact. As shown by an earlier publication, [4] Lang was primarily interested in more easily used and more flexible parsers for extensible programming languages. Tomita's goal was to parse natural language text thoroughly and efficiently. Standard LR parsers cannot accommodate the nondeterministic and ambiguous nature of natural language, and the GLR algorithm can.

Algorithm

Briefly, the GLR algorithm works in a manner similar to the LR parser algorithm, except that, given a particular grammar, a GLR parser will process all possible interpretations of a given input in a breadth-first search. On the front-end, a GLR parser generator converts an input grammar into parser tables, in a manner similar to an LR generator. However, where LR parse tables allow for only one state transition (given a state and an input token), GLR parse tables allow for multiple transitions. In effect, GLR allows for shift/reduce and reduce/reduce conflicts.

When a conflicting transition is encountered, the parse stack is forked into two or more parallel parse stacks, where the state corresponding to each possible transition is at the top. Then, the next input token is read and used to determine the next transition(s) for each of the "top" states – and further forking can occur. If any given top state and input token do not result in at least one transition, then that "path" through the parse tables is invalid and can be discarded.

A crucial optimization known as a graph-structured stack allows sharing of common prefixes and suffixes of these stacks, which constrains the overall search space and memory usage required to parse input text. The complex structures that arise from this improvement make the search graph a directed acyclic graph (with additional restrictions on the "depths" of various nodes), rather than a tree.

Advantages

Recognition using the GLR algorithm has the same worst-case time complexity as the CYK algorithm and Earley algorithm: O(n3).[ citation needed ] However, GLR carries two additional advantages:

In practice, the grammars of most programming languages are deterministic or "nearly deterministic", meaning that any nondeterminism is usually resolved within a small (though possibly unbounded) number of tokens[ citation needed ]. Compared to other algorithms capable of handling the full class of context-free grammars (such as Earley parser or CYK algorithm), the GLR algorithm gives better performance on these "nearly deterministic" grammars, because only a single stack will be active during the majority of the parsing process.

GLR can be combined with the LALR(1) algorithm, in a hybrid parser, allowing still higher performance. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Context-free grammar</span> Type of formal grammar

In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form

In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968.

In computer science, an LALR parser is part of the compiling process where human readable text is converted into a structured representation to be read by computers. An LALR parser is a software tool to process (parse) text into a very specific internal representation that other programs, such as compilers, can work with. This process happens according to a set of production rules specified by a formal grammar for a computer language.

In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, canonical LR(1) parsers, minimal LR(1) parsers, and generalized LR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages.

In computer science, the Cocke–Younger–Kasami algorithm is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming.

In computer science, an LL parser is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.

In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking. The parser is mechanically generated from a formal grammar for the language.

A canonical LR parser is a type of bottom-up parsing algorithm used in computer science to analyze and process programming languages. It is based on the LR parsing technique, which stands for "left-to-right, rightmost derivation in reverse."

Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part.

Top-down parsing in computer science is a parsing strategy where one first looks at the highest level of the parse tree and works down the parse tree by using the rewriting rules of a formal grammar. LL parsers are a type of parser that uses a top-down parsing strategy.

In computer science, an ambiguous grammar is a context-free grammar for which there exists a string that can have more than one leftmost derivation or parse tree. Every non-empty context-free language admits an ambiguous grammar by introducing e.g. a duplicate rule. A language that only admits ambiguous grammars is called an inherently ambiguous language. Deterministic context-free grammars are always unambiguous, and are an important subclass of unambiguous grammars; there are non-deterministic unambiguous grammars, however.

<span class="mw-page-title-main">Graph-structured stack</span>

In computer science, a graph-structured stack (GSS) is a directed acyclic graph where each directed path represents a stack. The graph-structured stack is an essential part of Tomita's algorithm, where it replaces the usual stack of a pushdown automaton. This allows the algorithm to encode the nondeterministic choices in parsing an ambiguous grammar, sometimes with greater efficiency.

In computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG. This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser.

In formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are the context-free languages that can be accepted by a deterministic pushdown automaton. DCFLs are always unambiguous, meaning that they admit an unambiguous grammar. There are non-deterministic unambiguous CFLs, so DCFLs form a proper subset of unambiguous CFLs.

In formal grammar theory, the deterministic context-free grammars (DCFGs) are a proper subset of the context-free grammars. They are the subset of context-free grammars that can be derived from deterministic pushdown automata, and they generate the deterministic context-free languages. DCFGs are always unambiguous, and are an important subclass of unambiguous CFGs; there are non-deterministic unambiguous CFGs, however.

In computer science, SYNTAX is a system used to generate lexical and syntactic analyzers (parsers) for all kinds of context-free grammars (CFGs) as well as some classes of contextual grammars. It has been developed at INRIA in France for several decades, mostly by Pierre Boullier, but has become free software since 2007 only. SYNTAX is distributed under the CeCILL license.

<span class="mw-page-title-main">History of compiler construction</span>

In computing, a compiler is a computer program that transforms source code written in a programming language or computer language, into another computer language. The most common reason for transforming source code is to create an executable program.

SLR grammars are the class of formal grammars accepted by a Simple LR parser. SLR grammars are a superset of all LR(0) grammars and a subset of all LALR(1) and LR(1) grammars.

A lookahead LR parser (LALR) generator is a software tool that reads a context-free grammar (CFG) and creates an LALR parser which is capable of parsing files written in the context-free language defined by the CFG. LALR parsers are desirable because they are very fast and small in comparison to other types of parsers.

Syntactic parsing is the automatic analysis of syntactic structure of natural language, especially syntactic relations and labelling spans of constituents. It is motivated by the problem of structural ambiguity in natural language: a sentence can be assigned multiple grammatical parses, so some kind of knowledge beyond computational grammar rules is needed to tell which parse is intended. Syntactic parsing is one of the important tasks in computational linguistics and natural language processing, and has been a subject of research since the mid-20th century with the advent of computers.

References

  1. Masaru Tomita (6 December 2012). Generalized LR Parsing. Springer Science & Business Media. ISBN   978-1-4615-4034-2.
  2. Lang, Bernard (1974). "Deterministic techniques for efficient non-deterministic parsers". In Loeckx, J. (ed.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 14. Saarbrücken: Springer. pp. 255–269. doi:10.1007/3-540-06841-4_65. ISBN   978-3-540-06841-9. ISSN   0302-9743.
  3. Masaru Tomita. Efficient parsing for natural language. Kluwer Academic Publishers, Boston, 1986.
  4. Lang, Bernard (December 1971). "Parallel non-deterministic bottom-up parsing". ACM SIGPLAN Notices. Proceedings of the international symposium on Extensible languages. 6 (12): 56–57. doi: 10.1145/942582.807982 .
  5. "Elkhound, Elsa and Cqual++: Open-Source Static Analysis for C++". YouTube . 22 August 2012. Archived from the original on 2021-12-21.

Further reading