Gas collecting tube

Last updated

The characterization gas collecting tube describes an oblong gas-tight container with one valve at either end. Usually such a container has a gauged volume, has a cylindrical shape and is made of glass. Gas collecting tubes are used for science-related purposes; for taking samples of gases.

Contents

Versions

Capacity of gas collecting tubes 150, 250, 350, 500 and 1.000 ml

Measurement of the Mass Density of a Gas - Aspirator Method

The mass density of a gas can be measured by using a gas collecting tube, an analytical balance and an aspirator. The mass and volume of a displaced amount of gas are determined: At atmospheric pressure , the gas collecting tube is filled with the gas to be investigated and the overall mass is measured. Then the aspirator sucks out much of the gas yielding a second overall mass measurement. (The difference of masses represents the mass () of the extracted amount of gas.) Finally, the nearly evacuated gas collecting tube is allowed to suck in an outgassed liquid, usually previously heated water, which is offered under atmospheric pressure . The gas collecting tube is weighed for a third and last time containing the liquid yielding the value . (The difference of masses of the nearly evacuated tube and the liquid-containing tube gives the mass () of the sucked-in liquid, that took the place of the extracted amount of gas.) The given mass-density of the liquid permits to calculate the displaced volume (). Thus giving mass and volume of the extracted amount of gas, consequently accessing its mass density () under atmospheric pressure. [1]

Measurement of the Mass Density of a Gas - Two Fluid Method

The mass density of a fluid can be measured by using a gas collecting tube, an analytical balance and two other fluids of known mass densities, preferably a gas and a liquid (with mass densities , ). Overview: First, mass measurements get the volume and the evacuated mass of the gas collecting tube; secondly, these two are used to measure and calculate the mass-density of the investigated fluid.

Fill the gas collecting tube with one of those fluids of given mass density and measure the overall mass, do the same with the second one giving the two mass values , . Consequently, for those two fluids, the definition of mass density can be rewritten:

These two equations with two unknowns and can be solved by using elementary algebra:

(The relative error of the result significantly depends on the relative proportions of the given mass densities and the measured masses.)

Now fill the gas collecting tube with the fluid to be investigated. Measure the overall mass to calculate the mass of the fluid inside the tube yielding the desired mass density .

Molar Mass from the Mass Density of a Gas

If the gas is a pure gaseous chemical substance (and not a mixture), with the mass density , then using the ideal gas law permits to calculate the molar mass of the gaseous chemical substance:[ citation needed ]

Where represents the universal gas constant, the absolute temperature at which the measurements took place.

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

Equation of state An equation describing the state of matter under a given set of physical conditions

In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

Relative density Ratio of two densities

Relative density, or specific gravity, is the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage.

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

The Grashof number (Gr) is a dimensionless number in fluid dynamics and heat transfer which approximates the ratio of the buoyancy to viscous force acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number. It's believed to be named after Franz Grashof. Though this grouping of terms had already been in use, it wasn't named until around 1921, 28 years after Franz Grashof's death. It's not very clear why the grouping was named after him.

Roche limit Orbital radius that will break up a satellite

In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's gravitational self-attraction. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit, material tends to coalesce. The Roche radius depends on the radius of the first body and on the ratio of the bodies' densities.

Bernoullis principle Principle relating to fluid dynamics

In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes and non-adiabatic processes are small and can be neglected.

Speed of sound Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second, or one kilometre in 2.9 s or one mile in 4.7 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound is about 331 m/s.

In viscous fluid dynamics, the Archimedes number (Ar), is a dimensionless number used to determine the motion of fluids due to density differences, named after the ancient Greek scientist and mathematician Archimedes.

Euler equations (fluid dynamics) Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

Rankine–Hugoniot conditions

The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave in a one-dimensional flow in fluids or a one-dimensional deformation in solids. They are named in recognition of the work carried out by Scottish engineer and physicist William John Macquorn Rankine and French engineer Pierre Henri Hugoniot.

Venturi effect Reduced pressure caused by a flow restriction in a tube or pipe

The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, the 18th century Italian physicist, Giovanni Battista Venturi.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow.

Ram pressure Pressure due to movement through a fluid medium

Ram pressure is a pressure exerted on a body moving through a fluid medium, caused by relative bulk motion of the fluid rather than random thermal motion. It causes a drag force to be exerted on the body. Ram pressure is given in tensor form as

The Ostwald–Freundlich equation governs boundaries between two phases; specifically, it relates the surface tension of the boundary to its curvature, the ambient temperature, and the vapor pressure or chemical potential in the two phases.

Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities. Governmental regulations in many countries require that the probability of such accidental releases be analyzed and their quantitative impact upon the environment and human health be determined so that mitigating steps can be planned and implemented.

Lattice Boltzmann methods Class of computational fluid dynamics methods

Lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method, is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

Slip ratio in gas–liquid (two-phase) flow, is defined as the ratio of the velocity of the gas phase to the velocity of the liquid phase.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

References

  1. Physikalische Chemie, Kaiser, Hennig, Verlag Dr. Max Gehlen, Bad Homburg, 1983, Seite 140 (in German)