Gemmatimonas groenlandica | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Gemmatimonadota |
Class: | Gemmatimonadetes |
Order: | Gemmatimonadales |
Family: | Gemmatimonadaceae |
Genus: | Gemmatimonas |
Species: | G. groenlandica |
Binomial name | |
Gemmatimonas groenlandica Zeng et al. 2020 [1] | |
Type strain | |
TET16 [2] |
Gemmatimonas groenlandica is a bacterium species from the genus of Gemmatimonas which has been isolated from a stream in Zackenberg Valley, Greenland. [2] [1]
This species was isolated using a culturomics strategy using a mass spectroscopy-based high-throughput profiling method, along with a rapid screening technique for chlorophototrophs. [2]
The species is an aerobic anoyxgenic photohetertroph; it is the first one of its kind isolated from this phylum. It can also be easily cultured in a liquid medium under fully aerobic conditions. Conversely, growth was not observed under photoautotrophic and chemoautotrophic conditions. Additionally, the species was not observed to ferment under anaerobic conditions. The cells were visualized utilizing scanning electron microscopy and transmission electron microscopy; they were found to exist as short to long rods, reproducing by binary fission and occasional budding. The cells were sensitive to neomycin, amoxicillin, tetracycline, and amphotericin B, but possessed antibiotic resistance to bacitracin, chloramphenicol, and nystatin.
Molecular data to date has indicated that chlorophototrophic Gemmatimonadetes bacteria can be found in a wide variety of environments (e.g. soils, lakes, rivers, biofilms, plant surfaces), with the exception of marine environments. However, sampling complexities and the prevailing perception of low activities of phototrophic bacteria in Arctic conditions have left CGBs grossly understudied. The ease with which Gemmatimonas groenlandica can now be cultured, which researchers have attributed to Greenland's cold low-biomass environment and their employment of antibiotics throughout initial enrichment, allows for more detailed physiological studies of this novel model microorganism and possible strain genetic engineering in the future. [2]
The Planctomycetota are a phylum of widely distributed bacteria, occurring in both aquatic and terrestrial habitats. They play a considerable role in global carbon and nitrogen cycles, with many species of this phylum capable of anaerobic ammonium oxidation, also known as anammox. Many Planctomycetota occur in relatively high abundance as biofilms, often associating with other organisms such as macroalgae and marine sponges.
Methanotrophs are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to survive.
Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.
Polyphosphate-accumulating organisms (PAOs) are a group of microorganisms that, under certain conditions, facilitate the removal of large amounts of phosphorus from their environments. The most studied example of this phenomenon is in polyphosphate-accumulating bacteria (PAB) found in a type of wastewater processing known as enhanced biological phosphorus removal (EBPR), however phosphate hyperaccumulation has been found to occur in other conditions such as soil and marine environments, as well as in non-bacterial organisms such as fungi and algae. PAOs accomplish this removal of phosphate by accumulating it within their cells as polyphosphate. PAOs are by no means the only microbes that can accumulate phosphate within their cells and in fact, the production of polyphosphate is a widespread ability among microbes. However, PAOs have many characteristics that other organisms that accumulate polyphosphate do not have that make them amenable to use in wastewater treatment. Specifically, in the case of classical PAOs, is the ability to consume simple carbon compounds without the presence of an external electron acceptor by generating energy from internally stored polyphosphate and glycogen. Most other bacteria cannot consume under these conditions and therefore PAOs gain a selective advantage within the mixed microbial community present in the activated sludge. Therefore, wastewater treatment plants that operate for enhanced biological phosphorus removal have an anaerobic tank prior to the other tanks to give PAOs preferential access to the simple carbon compounds in the wastewater that is influent to the plant.
A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and many green non-sulfur bacteria (GNsB), together known as green bacteria. They differ from other antenna complexes by their large size and lack of protein matrix supporting the photosynthetic pigments. Green sulfur bacteria are a group of organisms that generally live in extremely low-light environments, such as at depths of 100 metres in the Black Sea. The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day. To achieve this, the bacteria contain chlorosome structures, which contain up to 250,000 chlorophyll molecules. Chlorosomes are ellipsoidal bodies, in GSB their length varies from 100 to 200 nm, width of 50-100 nm and height of 15 – 30 nm, in GNsB the chlorosomes are somewhat smaller.
Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that Beggiatoa oxidized hydrogen sulfide (H2S) as an energy source, forming intracellular sulfur droplets, with oxygen as the terminal electron acceptor and CO2 used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.
The Gemmatimonadota are a phylum of bacteria established in 2003. The phylum contains two classes Gemmatimonadetes and Longimicrobia.
Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. There are four kinds of microorganisms that cause infectious disease: bacteria, fungi, parasites and viruses, and one type of infectious protein called prion.
Ultramicrobacteria are bacteria that are smaller than 0.1 μm3 under all growth conditions. This term was coined in 1981, describing cocci in seawater that were less than 0.3 μm in diameter. Ultramicrobacteria have also been recovered from soil and appear to be a mixture of Gram-positive, Gram-negative and cell-wall-lacking species. Ultramicrobacteria possess a relatively high surface-area-to-volume ratio due to their small size, which aids in growth under oligotrophic conditions. The relatively small size of ultramicrobacteria also enables parasitism of larger organisms; some ultramicrobacteria have been observed to be obligate or facultative parasites of various eukaryotes and prokaryotes. One factor allowing ultramicrobacteria to achieve their small size seems to be genome minimization such as in the case of the ultramicrobacterium P. ubique whose small 1.3 Mb genome is seemingly devoid of extraneous genetic elements like non-coding DNA, transposons, extrachromosomal elements etc. However, genomic data from ultramicrobacteria is lacking since the study of ultramicrobacteria, like many other prokaryotes, is hindered by difficulties in cultivating them.
Aerobic anoxygenic phototrophic bacteria (AAPBs) are Alphaproteobacteria and Gammaproteobacteria that are obligate aerobes that capture energy from light by anoxygenic photosynthesis. Anoxygenic photosynthesis is the phototrophic process where light energy is captured and stored as ATP. The production of oxygen is non-existent and, therefore, water is not used as an electron donor. They are widely distributed marine bacteria that may constitute over 10% of the open ocean microbial community. They can be particularly abundant in oligotrophic conditions where they were found to be 24% of the community. Aerobic anoxygenic phototrophic bacteria are photoheterotrophic (phototroph) microbes that exist in a variety of aquatic environments. Most are obligately aerobic, meaning they require oxygen to grow. One aspect of these bacteria is that they, unlike other similar bacteria, are unable to utilize BChl (bacteriochlorophyll) for anaerobic growth. The only photosynthetic pigment that exists in AAPB is BChl-a. Anaerobic phototrophic bacteria, on the contrary, can contain numerous species of photosynthetic pigments like bacteriochlorophyll-a. These bacteria can be isolated using carotenoid presence and medias containing organic compounds. Predation, as well as the availability of phosphorus and light, have been shown to be important factors that influence AAPB growth in their natural environments. AAPBs are thought to play an important role in carbon cycling by relying on organic matter substrates and acting as sinks for dissolved organic carbon. There is still a knowledge gap in research areas regarding the abundance and genetic diversity of AAPB, as well as the environmental variables that regulate these two properties.
Armatimonas rosea is a Gram-negative bacterium and also the first species to be characterized within the phylum Armatimonadota. The Armatimonadota were previously known as candidate phylum OP10. OP10 was composed solely of environmental 16S rRNA gene clone sequences prior to A. rosea's discovery.
Chthonomonas calidirosea is a Gram-negative bacterium and also the first representative of the new class Chthonomonadetes within the phylum Armatimonadota. The Armatimonadota were previously known as candidate phylum OP10. OP10 was composed solely of environmental 16S rRNA gene clone sequences prior to C. calidirosea's relative, Armatimonas rosea's discovery. It is now known that bacterial communities from geothermal environments, are generally constituted by, at least 5–10% of bacteria belonging to Armatimonadota.
Fimbriimonas ginsengisoli is a Gram-negative bacterium and the first representative of the class Fimbriimonadia within the phylum Armatimonadota. The Armatimonadota were previously known as candidate phylum OP10. OP10 was composed solely of environmental 16S rRNA gene clone sequences prior to F. ginsengisoli's relative, Armatimonas rosea's discovery.
Lautropia mirabilis is a Gram-negative, facultatively anaerobic, oxidase- and catalase-positive, motile bacterium of the genus Lautropia and family Burkholderiaceae, isolated from the mouth of children who were infected with human immunodeficiency virus.
Mycoplasma orale is a small bacterium found in the class Mollicutes. It belongs to the genus Mycoplasma, a well-known group of bacterial parasites that inhabit humans. It also is known to be an opportunistic pathogen in immunocompromised humans. As with other Mycoplasma species, M. orale is not readily treated with many antibiotics due to its lack of a peptidoglycan cell wall. Therefore, this species is relevant to the medical field as physicians face the task of treating patients infected with this microbe. It is characterized by a small physical size, a small genome size, and a limited metabolism. It is also known to frequently contaminate laboratory experiments. This bacteria is very similar physiologically and morphologically to its sister species within the genus Mycoplasma; however, its recent discovery leaves many questions still unanswered about this microbe.
In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.
Macromonasbipunctata is a Gram-negative, colorless, and heterotrophic sulfur bacterium of the genus Macromonas. It is commonly found in sewage aeration tanks and caves where moonmilk has formed. In the 1920s, researcher Gicklhorn first discovered this organism under the name Pseudomonasbipunctata. After further study and culturing by Utermöhl and Koppe, in 1923, it was later renamed Macromonasbipunctata. This organism is thought to be non-pathogenic species. In fact, the moonmilk produced was referenced as a remedy for infections in the Middle Ages.
"Candidatus Aciduliprofundum boonei" is an obligate thermoacidophilic candidate species of archaea belonging to the phylum "Euryarchaeota". Isolated from acidic hydrothermal vent environments, "Ca. A. boonei" is the first cultured representative of a biogeochemically significant clade of thermoacidophilic archaea known as the "Deep-Sea Hydrothermal Vent Euryarchaeota 2 (DHVE2)".
Neobodo are diverse protists belonging to the eukaryotic supergroup Excavata. They are Kinetoplastids in the subclass Bodonidae. They are small, free-living, heterotrophic flagellates with two flagella of unequal length used to create a propulsive current for feeding. As members of Kinetoplastids, they have an evident kinetoplast There was much confusion and debate within the class Kinetoplastid and subclass Bodonidae regarding the classification of the organism, but finally the new genera Neobodo was proposed by Keith Vickerman. Although they are one of the most common flagellates found in freshwater, they are also able to tolerate saltwater Their ability to alternate between both marine and freshwater environments in many parts of the world give them a “cosmopolitan” character. Due to their relatively microscopic size ranging between 4–12 microns, they are further distinguished as heterotrophic nanoflagellates. This small size ratio limits them as bacterivores that swim around feeding on bacteria attached to surfaces or in aggregates.