George C. Whipple

Last updated • 9 min readFrom Wikipedia, The Free Encyclopedia
George C. Whipple
GC Whipple 1916c.jpg
George C. Whipple, Harvard University
Born(1866-03-02)March 2, 1866
New Boston, New Hampshire
DiedNovember 27, 1924(1924-11-27) (aged 58)
Cambridge, Massachusetts
EducationBS, Massachusetts Institute of Technology, 1889
Occupation(s)Microbiologist and sanitary engineer
Known forCofounder of the Harvard School of Public Health
AwardsWater Industry Hall of Fame, American Water Works Association, 1973.

George Chandler Whipple (March 2, 1866 – November 27, 1924) was an American civil engineer and an expert in the field of sanitary microbiology. His career extended from 1889 to 1924 and he is best known as a co-founder of the Harvard School of Public Health. Whipple published some of the most important books in the early history of public health and applied microbiology.

Contents

Early life and education

Whipple was born in 1866 in the small town of New Boston, New Hampshire, which is located a few miles due west of Manchester, New Hampshire. He spent most of his childhood in the Chelsea suburb of Boston where his father ran a hardware store. He graduated from the Massachusetts Institute of Technology in 1889 with a Bachelor of Science degree in civil engineering. [1] [2] [3] [4] While a student at MIT, Whipple was profoundly influenced by William T. Sedgwick. He also interacted with Dr. Thomas M. Drown and fellow students George W. Fuller and Allen Hazen. Later, Whipple undertook postgraduate work at the Stevens Institute of Technology at Hoboken, New Jersey. [5] :224

Career

His first two jobs were with water utilities: Boston Water Works as Director of the Chestnut Hill Laboratory (1889–97) and Brooklyn Department of Water Supply as Director of the Mt. Prospect Laboratory (1897-1904). [3] [6] While at both institutions, he gathered the material to produce his seminal work The Microscopy of Drinking Water. It was the first text solely devoted to identifying and cataloging microscopic aquatic organisms that interfered with sources of drinking water. Many noteworthy items were included in the book, but two deserve special mention. First, to determine the transparency/turbidity in reservoirs, Whipple modified the original all-white Secchi disk [7] to "…a disc about 8 inches in diameter, divided into quadrants painted alternately black and white like the target of a level-rod…" [8] :73–75 The black and white Secchi disk is the standard disk currently used in limnology investigations and marine water quality studies. [9] [10] Second, Chapter 9 of his book organized for the first time what was known about odors in water supplies and how algae and other microorganisms contributed to problem odors. [8] :113–29

Hazen and Whipple

Whipple joined Allen Hazen in a consulting firm venture in 1904. Their offices were in New York City and they served clients throughout the U.S. [1] Hazen took the lead on most of the consulting work and Whipple "lent nominal consultative association" in the later years. [5] :228 In 1914, the firm's name was changed to Hazen, Whipple and Fuller when Weston E. Fuller became a partner. Another pioneer in sanitary engineering, Malcolm Pirnie, joined the firm in 1911 and five years later was made a partner in the firm. With Hazen's death in 1930, the firm's records and books passed into the hands of Pirnie. [11] [12]

Whipple worked directly with the Portland, Maine Water District in 1908 and 1924. He recommended on both occasions that filtration of Sebago Lake was not required. [13] For other water supplies, he had the opposite recommendation. In 1922, he recommended that most surface water supplies be filtered because those water sources were rarely protected from contamination. [14]

Hazen and Whipple were hired by the City of Pittsburgh in 1910 to investigate the necessity of replacing the city's combined sewer system, which had no sewage treatment plant, with a separate sewer system and a treatment plant. They recommended no change in the existing system. At the time, their report was hailed as "The most important sewerage and sewage disposal report made in the United States." [15] Later in the 20th century, with a greater understanding by the engineering profession of the environmental impacts of combined sewer overflows, and the regulatory requirements for their control, the report would not receive the same plaudits today that it did in 1910.

While a partner at Hazen and Whipple, he was also consulting professor of water supply and sewage disposal at the Brooklyn Polytechnic Institute from 1907 to 1911. [1] [16]

Chlorination and the Jersey City trials

Whipple's early training in bacteriology prepared him to evaluate the use of chlorine for disinfection of water supplies. In early 1906, Whipple visited Europe and toured several facilities using various forms of chlorine for drinking water disinfection. He presented his findings from the trip at a June 1906 AWWA conference. In his paper, he noted that while it was unlikely that "poisonous chemicals" would be added to drinking water to kill bacteria, that some consideration of chemical disinfection might be given in the future. [17] [18] After his presentation, the audience verbally attacked him for even suggesting that chemicals be used for drinking water disinfection. Neither sanitary engineers nor the public at large were ready for chemical disinfection. [17]

In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River, which was 23 miles west of the city. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 23, 1904. As was common during this time period, no treatment (except for detention and sedimentation fostered by Boonton Reservoir) was provided to the water supply. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. Among the many complaints by Jersey City officials was the contention that the water served to the city was not "pure and wholesome" as required by the contract. Whipple testified as an expert witness for the plaintiff in both trials. In the first trial, he testified that the water that was supplied to the city was contaminated with bacteria from sewage discharges in the watershed above the reservoir. Other expert witnesses for the plaintiffs included Earle B. Phelps, Charles-Edward A. Winslow and William T. Sedgwick. [19] [20]

In the second trial, Whipple attacked the proposal by John L. Leal to treat the water from the reservoir with chloride of lime (calcium hypochlorite). Instead, he recommended the construction of sewers in the watershed and a treatment plant that would discharge the treated wastes below the reservoir. The chlorination system was declared a success by the Special Master, William J. Magie, and was judged capable of supplying Jersey City with water that was "pure and wholesome." [19] [21]

Despite his opposition to chlorination of the Jersey City water supply, Whipple recommended the addition of chloride of lime before the slow sand filters at Poughkeepsie, New York. His recommendation was quickly adopted on March 17, 1909, which made the Poughkeepsie water supply the third U.S. drinking water source to receive continuous disinfection by chlorine (after Jersey City [September 26, 1908] and the treatment plant at Little Falls, New Jersey [February 4, 1909]). [19] [22]

Harvard School of Public Health

Whipple's career took an important turn in 1911 when he was appointed Gordon McKay Professor of Sanitary Engineering at Harvard University where he remained until his death. His appointment was somewhat unusual even during this time period due to the fact that he only possessed a bachelor of science degree. However, his extensive research and publications, his technical leadership and his position at the Brooklyn Polytechnic Institute prepared him for his new responsibilities. [1]

Along with his mentor, William T. Sedgwick, and Milton J. Rosenau, Whipple founded the School of Public Health in 1913 which was jointly supported by Harvard University and MIT. In 1922, the joint school became the Harvard School of Public Health and Whipple taught courses under the curriculum. [1]

American Red Cross and mission to Russia

Whipple was an active volunteer and advisor to the American Red Cross. In 1917 and with the rank of Major, he was appointed Deputy Commissioner to Russia. Whipple, along with his colleagues C.-E. A. Winslow and Malcolm Pirnie, was part of a large group of people who traveled to Russia to during the time of the Kerensky government. [4] [23] [24]

He also served Chief of the Department of Sanitation in the League of Red Cross Societies in Geneva, Switzerland. In this capacity he studied typhus fever in Romania. [25]

Whipple's Index

Whipple was also the author of a technique, called Whipple's Index, to measure the degree to which respondents' ages in surveys were affected by rounding or other kinds of culturally affected mis-reporting.

Personal life

During his adult life, Whipple lived primarily in New York City and Cambridge, Massachusetts. On June 29, 1893, he married Mary E. Rayner of Chelsea, Massachusetts. They had one daughter and one son: Marion (Mrs. Gerald M. Keith) and Joseph Rayner Whipple. [1] [2]

Whipple lent his name to the Life Extension Institute as a member of the Hygiene Reference Board—Public Health Administration. The institute, which was formed in 1913, promoted a number of useful public health measures including the development of uncontaminated water supplies. However, it also promoted eugenics which was a bio-social movement that included the sterilization of defective people. [26]

Professional associations and commissions

Whipple was active in a long list of professional associations and he served on numerous national and international commissions. He was elected to the American Public Health Association in 1899. Whipple became involved in the Committee on Standard Methods of Water Analysis, which was chaired by his friend George W. Fuller. In 1922, he was elected as a Charter Fellow of the APHA. [3]

George C. Whipple was also honored as a Fellow of the following institutions: American Academy of Arts and Sciences, American Association for the Advancement of Science, and Royal Sanitary Institute. [4] In 1973, he was inducted into the American Water Works Association Water Industry Hall of Fame.

Limited list of publications

The standard author abbreviation G.C.Whipple is used to indicate this person as the author when citing a botanical name. [31]

Related Research Articles

<span class="mw-page-title-main">Water purification</span> Process of removing impurities from water

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for human consumption, but water purification may also be carried out for a variety of other purposes, including medical, pharmacological, chemical, and industrial applications. The history of water purification includes a wide variety of methods. The methods used include physical processes such as filtration, sedimentation, and distillation; biological processes such as slow sand filters or biologically active carbon; chemical processes such as flocculation and chlorination; and the use of electromagnetic radiation such as ultraviolet light.

<span class="mw-page-title-main">Tap water</span> Publicly available water supplied to homes

Tap water is water supplied through a tap, a water dispenser valve. In many countries, tap water usually has the quality of drinking water. Tap water is commonly used for drinking, cooking, washing, and toilet flushing. Indoor tap water is distributed through indoor plumbing, which has existed since antiquity but was available to very few people until the second half of the 19th century when it began to spread in popularity in what are now developed countries. Tap water became common in many regions during the 20th century, and is now lacking mainly among people in poverty, especially in developing countries.

<span class="mw-page-title-main">William Thompson Sedgwick</span>

William Thompson Sedgwick was a teacher, epidemiologist, bacteriologist, and a key figure in shaping public health in the United States. He was president of many scientific and professional organizations during his lifetime, including president of the American Public Health Association in 1915. He was one of three founders of the joint MIT-Harvard School of Public Health in 1913.

American Water Works Association (AWWA) is an international non-profit, scientific and educational association founded to improve water quality and supply. Established in 1881, it is a lobbying organization representing a membership of around 50,000 members worldwide.

Moses N. Baker was a noted editor and author in the field of drinking water history and technology. His most important book is still used today: The Quest for Pure Water: The History of Water Purification from the Earliest Records to the Twentieth Century. He was also active in the field of public health holding several positions on boards of health at the state and local levels.

In the United States, public drinking water is governed by the laws and regulations enacted by the federal and state governments. Certain ordinances may also be created at a more local level. The Safe Drinking Water Act (SDWA) is the principal federal law. The SDWA authorizes the United States Environmental Protection Agency (EPA) to create and enforce regulations to achieve the SDWA goals.

<span class="mw-page-title-main">Abel Wolman</span> American scientist (1892–1989)

Abel Wolman was an American engineer, educator and pioneer of modern sanitary engineering. His professional career left impacts in academia, sanitary engineering research, environmental and public health services, engineering professional societies, and journal publications. Wolman is best known for his research with Linn Enslow in the chlorination of Baltimore's municipal water supply, which has contributed to the distribution of safe municipal water supplies globally.

<span class="mw-page-title-main">George W. Fuller</span>

George Warren Fuller was an American sanitary engineer who was also trained in bacteriology and chemistry. His career extended from 1890 to 1934 and he was responsible for important innovations in water and wastewater treatment. He designed and built the first modern water filtration plant, and he designed and built the first chlorination system that disinfected a U.S. drinking water supply. In addition, he performed groundbreaking engineering work on sewage treatment facilities in the U.S. He was President of both the American Water Works Association and the American Public Health Association, and he was recognized internationally as an expert civil and sanitary engineer.

<span class="mw-page-title-main">John L. Leal</span> American public health physician (1858–1914)

John Laing Leal was an American physician and water treatment expert who, in 1908, was responsible for conceiving and implementing the first disinfection of a U.S. drinking water supply using chlorine. He was one of the principal expert witnesses at two trials which examined the quality of the water supply in Jersey City, New Jersey, and which evaluated the safety and utility of chlorine for production of "pure and wholesome" drinking water. The second trial verdict approved the use of chlorine to disinfect drinking water which led to an explosion of its use in water supplies across the U.S.

<span class="mw-page-title-main">Allen Hazen</span> American civil engineer (1869–1930)

Allen Hazen was an American civil engineer and an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930, and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers.

<span class="mw-page-title-main">Michael J. McGuire</span> American engineer and writer

Michael John McGuire is an American environmental engineer and writer whose career has focused on drinking water quality improvement. He has been recognized for his expertise in the control of trace organic and inorganic contaminants and microbial pathogens in water. He is also known for his work in the identification, control and treatment of taste and odor problems in drinking water. He has published numerous articles in professional journals and he has been the co-editor of five books and compilations of articles. He published a book that documented the first continuous disinfection of a drinking water supply in the U.S. With Marie S. Pearthree, he wrote a book on the corrosive water debacle in Tucson, Arizona in 1992–94. He has been active in the American Water Works Association, and he has served as a volunteer and officer in that organization. In 2009, he was elected to the National Academy of Engineering.

<span class="mw-page-title-main">Edward Bartow</span> American chemist

Edward Bartow was an American chemist and an expert in the field of sanitary chemistry. His career extended from 1897 to 1958 and he is best known for his work in drinking water purification and wastewater treatment. He was well known as an educator, and his many students went on to leadership positions in the fields of sanitary chemistry and engineering.

John Robert Baylis was an American chemist and sanitary engineer. His career extended from about 1905 to 1963 and he is best known for his work in applied research to improve drinking water purification.

<span class="mw-page-title-main">Clemens Herschel</span> American hydraulic engineer, inventor of the Venturi meter

Clemens Herschel was an American hydraulic engineer. His career extended from about 1860 to 1930, and he is best known for inventing the Venturi meter, which was the first large-scale, accurate device for measuring water flow. He developed this device while serving as director of the Holyoke Testing Flume, a turbine testing facility which he would redesign, which became the first modern hydraulics laboratory in the United States and the world.

Earle Bernard Phelps was a chemist, bacteriologist and sanitary expert who served in governmental positions and as an academic in some of the leading universities in the U.S. He is known for his contributions in sewage disinfection, water chlorination, sewage treatment, milk pasteurization, shellfish control, and for describing the “oxygen sag curve” in surface water bodies.

<span class="mw-page-title-main">John M. Diven</span>

John Malvina Diven was a New York and South Carolina superintendent of several water utilities and an important figure in the early history of the American Water Works Association. He was honored by AWWA for his dedicated service with election to honorary membership and selection as a member of Water Industry Hall of Fame.

<span class="mw-page-title-main">Water chlorination</span> Chorination of water

Water chlorination is the process of adding chlorine or chlorine compounds such as sodium hypochlorite to water. This method is used to kill bacteria, viruses and other microbes in water. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, and typhoid.

<span class="mw-page-title-main">William J. Magie</span> American judge

William Jay Magie was a justice of the New Jersey Supreme Court from 1880 to 1900, serving as chief justice from 1897 to 1900.

Malcolm Pirnie Sr. was an American civil and consulting engineer, pioneer in sanitary engineering, founder of Malcolm Pirnie, Inc., and president of the American Society of Civil Engineers in 1944.

<span class="mw-page-title-main">Stuart W. Krasner</span>

Stuart William Krasner, was the Principal Environmental Specialist (retired) with the Metropolitan Water District of Southern California, at the Water Quality Laboratory located in La Verne, California. In his 41 years with Metropolitan, he made revolutionary changes in the field's understanding of how disinfection by-products occur, are formed and how they can be controlled in drinking water. His research contributions include the study of emerging DBPs including those associated with chlorine, chloramines, ozone, chlorine dioxide and bromide/iodide-containing waters. He made groundbreaking advances in understanding the watershed sources of pharmaceuticals and personal care products (PPCPs) and wastewater impacts on drinking-water supplies. For DBPs and PPCPs, he developed analytical methods and occurrence data and he provided technical expertise for the development of regulations for these drinking water contaminants. In the early 1990s, Krasner developed the 3x3 matrix illustrating removal of total organic carbon from drinking water as a function of water alkalinity and initial total organic carbon concentration. The matrix was revised by him and included in the USEPA Stage 1 D/DBP regulation as the enhanced coagulation requirement. Every water utility in the U.S. that is subject to this regulation is required to meet total organic carbon removal requirements along with their exceptions.

References

  1. 1 2 3 4 5 6 "George Chandler Whipple." (1925). Jour. American Water Works Association. 13:1, 93-4.
  2. 1 2 Marquis, A.N. ed. "Whipple, George Chandler." (1910). Who's Who in America. v. 6, 2058.
  3. 1 2 3 "George Chandler Whipple." (1925). Am. Jour. Public Health. 15:1, 93-4.
  4. 1 2 3 "Heart Attack Fatal to Professor G. C Whipple." (1924). The Harvard Crimson. November 29.
  5. 1 2 Curran, Jean A. (1970). Founders of the Harvard School of Public Health: With Biographical Notes 1909-1946. New York:Josiah Macy, Jr. Foundation.
  6. Whipple, George C. (1901). "The Work of Mt. Prospect Laboratory of the Brooklyn Water Works." Trans. Am. Microscopical Soc. 22: 23rd Annual Mtg. (May) 25-40
  7. Cialdi, M. and Secchi, P. A. (1865). "Sur la Transparence de la Mer." Comptes Rendu de l'Acadamie des Sciences. 61: 100-104.
  8. 1 2 Whipple, George C. (1899). The Microscopy of Drinking-Water. New York:John Wiley & Sons.
  9. The Secchi Disk—What Is It? Archived 2012-08-14 at the Wayback Machine Accessed 2012-07-05.
  10. Why a Black and White Secchi Disk? Archived 2012-06-22 at the Wayback Machine Accessed 2012-07-05.
  11. Malcolm Pirnie, Inc. Accessed 12-06-29.
  12. "Personal Items." (1922). Municipal and County Engineering. 63: (November) 25.
  13. The History of the Protection of Sebago Lake, 1908 – 1925 Accessed 2012-07-05.
  14. "Favors Filtration of Surface Waters." New York Times. January 15, 1922.
  15. Tarr, J.A. and McMichael, F.C. (1977). "Historic Turning Points in Municipal Water Supply and Wastewater Disposal, 1950-1932." Civil Engineer. 47:10.
  16. "A New Professor of Sanitary Engineering." (1911). Harvard Alumni Bulletin. 470-2.
  17. 1 2 Whipple, George C. (1906). "Disinfection as a Means of Water Purification." Proceedings AWWA. 266-80.
  18. Whipple, George C. (1906). "Disinfection as a Means of Water Purification." The Surveyor. 30:768, October 5. 413-6.
  19. 1 2 3 McGuire, Michael J. (2013). The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.
  20. Between the Mayor and Aldermen of Jersey City, Complainant, and Patrick H. Flynn and Jersey City Water Supply Company, Defendants: On Bill, etc. (In Chancery of New Jersey) 12 vols. n.p.:privately printed. 1908-10, 1-6987.
  21. Magie, William J. (1910). In Chancery of New Jersey: Between the Mayor and Aldermen of Jersey City, Complainant, and the Jersey City Water Supply Co., Defendant. Report for Hon. W.J. Magie, special master on cost of sewers, etc., and on efficiency of sterilization plant at Boonton, Press Chronicle Co., Jersey City, New Jersey, (Case Number 27/475-Z-45-314), 1-15.
  22. Baker, Moses N. (1981). The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver: American Water Works Association, 153.
  23. Winslow, Charles E.A. (1953). "They Were Giants in Those Days." American Journal of Public Health. 43: June, 15-9.
  24. Sutton, Antony C. (2001). Wall Street and the Bolshevik Revolution. Chapter 5.
  25. "Europe's Health Frontier." (1920). American Medicine. 15:11, 606-9.
  26. Fisher, Irving; Eugene Lyman Fisk (1916). How to Live, Rules for Healthful Living Based on Modern Science, Authorized by and Prepared in Collaboration with the Hygiene Reference Board of the Life Extension Institute, Inc (9th ed.). New York; London: Funk & Wagnalls Company. ISBN   978-1-59605-035-8. OCLC   17979944.
  27. Mason, W. P. (1907). "The Value of Pure Water . By George C. Whipple. New York: John Wiley & Sons. Pp. 84. Price, $1.00". Science. 25 (646): 787. doi:10.1126/science.25.646.787.a. S2CID   239875329.
  28. Kofoid, Charles A. (1900). "The Microscopy of Drinking Water . By George Chandler Whipple. New York, John Wiley & Sons. 1899. Pp. Xii + 300. With 21 figures and 19 half-tone plates". Science. 12 (289): 69–71. doi:10.1126/science.12.289.69. p. 71
  29. Blumer, George (1908). "Typhoid Fever . Its Causation, Transmission and Prevention. By George C. Whipple, Consulting Engineer. With an Introductory Essay by William T. Sedgwick, Professor of Biology, Massachusetts Institute of Technology. New York, John Wiley and Sons; London, Chapman and Hall, Limited. 1908". Science. 28 (725): 733. doi:10.1126/science.28.725.733.
  30. Pennak, Robert W. (1960). "Fresh-Water Biology . Henry Baldwin Ward and George Chandler Whipple. W. T. Edmondson, ed. Wiley, New York; Chapman and Hall, London, ed. 2, 1959. Xx + 1248 pp. Illus. $34.50". Science. 131 (3396): 296. doi:10.1126/science.131.3396.296.a. S2CID   239844116.
  31. International Plant Names Index.  G.C.Whipple.