This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages) |
George Sperling | |
---|---|
Born | 1934 (age 89–90) |
Nationality | American |
Alma mater | University of Michigan, Columbia University, Harvard University |
Known for | Research in Cognitive Psychology, Iconic Memory |
George Sperling (born 1934) [1] is an American cognitive psychologist, researcher, and educator. Sperling documented the existence of iconic memory (one of the sensory memory subtypes). Through several experiments, he showed support for his hypothesis that human beings store a perfect image of the visual world for a brief moment, before it is discarded from memory. He was in the forefront in wanting to help the deaf population in terms of speech recognition. [2] He argued that the telephone was created originally for the hearing impaired but it became popularized by the hearing community. He suggested with a sevenfold reduction in the bandwidth for video transmission, it can be useful for the improvement in American Sign Language communication. [2] Sperling used a method of partial report to measure the time course of visual persistence (sensory memory). [3]
He is a Distinguished Professor of both Cognitive Science and Neurobiology & Behavior at the University of California, Irvine.
In 1955, George Sperling graduated with a B.S. degree at the University of Michigan with hopes to become a scientist in one of the major scientific field such as biology, chemistry, mathematics, and physics. [1] In 1956, he went on to receive an M.A. degree in psychology from Columbia University. [3] [1] His passion for physiological psychology began accidentally in university and caused him to pursue a career in cognitive psychology. He received his Ph.D. from Harvard University in 1959, and his thesis paper was focused on short-term memory. [4]
In summer 1958, Sperling went to work at Bell Laboratories where numerous experiments were conducted. Sperling was originally attracted to psychology because he wanted to apply quantitative methods and theories used by physicists to describe the brain's mental microprocesses. [3]
In the early 1960s, George Sperling proposed a method of measuring visual persistence duration, an auditory synchronization method of measuring visual persistence duration. This approach had the synchrony of a click and the onset/termination of a light, this synchrony being judged by the subject. Later the method was innovated by with Erich Weichselgartner so that the entire rise and fall of the temporal brightness function was also measured, contrasting the initial method that only measured the moment and which visual persistence stopped. [3]
Throughout Sperling's career, he has contributed very much to the fields of visual information processing and theory and empirical research. [3] In 1960, Sperling performed an experiment using a matrix with three rows of three letters. Participants of the study were asked to look at the letters, for a brief period of time, and then recall them immediately afterwards. This technique, called free recall, showed that participants were able to, on average, recall 4–5 letters of the 9 they were given. This however, was already generally accepted in the psychological community, because it was understandable that people simply could not retain all the letters in their mind in such a brief period of time. Sperling, on the other hand, felt that they had encoded all of the letters in their mind, but had simply forgotten them while trying to recall this information on what they had seen. [5] He believed that all nine letters were stored in the viewer's memory for a short period of time, but the memory failed leading to only 4 or 5 being recalled. Sperling called this iconic memory. This was exemplified through Sperling's Iconic Memory Test, which involves having a grid of letters being flashed for 1/20 of a second. If individuals were prompted to recall a particular row immediately after the grid was shown, opposed to being asked to recall the entire grid, participants experienced higher accuracy. This procedure demonstrated that although iconic memory can store the whole grid, information tends to fade away too rapidly for a person to recall all of the information. [5] Sperling also showed this with his experiment of cued recall. This trial was similar to free recall; however, instead of allowing participants to recall any of the letters, it would allow them to view the same matrix for the same amount of time, and then hear a pitch corresponding to a different row in the matrix. The viewer was to recall the letters in that corresponding row. On average, viewers were able to recall more during cued recall trials than free recall.
Sperling built upon this experiment to then determine the amount of time before information was discarded from a person's memory. Using the same matrix, allowing viewers to see the matrix for the same amount of time, and still giving the pitches to cue the viewer which row to recall, Sperling added a twist: there would be a 5-millisecond delay after the letters disappeared before the cue would appear. The participants were unable to recall as many letters, thus showing that visual stimuli that are not added to short-term memory are discarded less than 5 milliseconds of initial introduction. (It was later agreed upon [ who? ] that most visual icons are eliminated from memory before 250 milliseconds.) [ citation needed ]
Sperling has lectured at Stanford University, University of Washington, University of Western Australia, University of London, University of California: Los Angeles, Columbia University, Duke University and New York University.[ citation needed ] He was elected a Fellow of the American Academy of Arts and Sciences in 1992. [6]
Sperling's first publication, "Negative Afterimages Without Prior Positive Images," was in visual psychophysics. He then went on to publish mathematical models for adaptation and flicker, contrast detection, binocular vision, and motion perception. [3]
Forgetting or disremembering is the apparent loss or modification of information already encoded and stored in an individual's short or long-term memory. It is a spontaneous or gradual process in which old memories are unable to be recalled from memory storage. Problems with remembering, learning and retaining new information are a few of the most common complaints of older adults. Studies show that retention improves with increased rehearsal. This improvement occurs because rehearsal helps to transfer information into long-term memory.
Short-term memory is the capacity for holding a small amount of information in an active, readily available state for a short interval. For example, short-term memory holds a phone number that has just been recited. The duration of short-term memory is estimated to be on the order of seconds. The commonly cited capacity of 7 items, found in Miller's Law, has been superseded by 4±1 items. In contrast, long-term memory holds information indefinitely.
Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, imagination, intelligence, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and computation, problem-solving and decision-making, comprehension and production of language. Cognitive processes use existing knowledge to discover new knowledge.
Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.
The interference theory is a theory regarding human memory. Interference occurs in learning. The notion is that memories encoded in long-term memory (LTM) are forgotten and cannot be retrieved into short-term memory (STM) because either memory could interfere with the other. There is an immense number of encoded memories within the storage of LTM. The challenge for memory retrieval is recalling the specific memory and working in the temporary workspace provided in STM. Retaining information regarding the relevant time of encoding memories into LTM influences interference strength. There are two types of interference effects: proactive and retroactive interference.
The Atkinson–Shiffrin model is a model of memory proposed in 1968 by Richard Atkinson and Richard Shiffrin. The model asserts that human memory has three separate components:
Iconic memory is the visual sensory memory register pertaining to the visual domain and a fast-decaying store of visual information. It is a component of the visual memory system which also includes visual short-term memory (VSTM) and long-term memory (LTM). Iconic memory is described as a very brief, pre-categorical, high capacity memory store. It contributes to VSTM by providing a coherent representation of our entire visual perception for a very brief period of time. Iconic memory assists in accounting for phenomena such as change blindness and continuity of experience during saccades. Iconic memory is no longer thought of as a single entity but instead, is composed of at least two distinctive components. Classic experiments including Sperling's partial report paradigm as well as modern techniques continue to provide insight into the nature of this SM store.
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate around a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.
In cognitive psychology, chunking is a process by which small individual pieces of a set of information are bound together to create a meaningful whole later on in memory. The chunks, by which the information is grouped, are meant to improve short-term retention of the material, thus bypassing the limited capacity of working memory and allowing the working memory to be more efficient. A chunk is a collection of basic units that are strongly associated with one another, and have been grouped together and stored in a person's memory. These chunks can be retrieved easily due to their coherent grouping. It is believed that individuals create higher-order cognitive representations of the items within the chunk. The items are more easily remembered as a group than as the individual items themselves. These chunks can be highly subjective because they rely on an individual's perceptions and past experiences, which are linked to the information set. The size of the chunks generally ranges from two to six items but often differs based on language and culture.
The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. More analysis produce more elaborate and stronger memory than lower levels of processing. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word. Phonemic processing includes remembering the word by the way it sounds. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar or has similar meaning. Once the word is perceived, the brain allows for a deeper processing.
Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.
In mental memory, storage is one of three fundamental stages along with encoding and retrieval. Memory is the process of storing and recalling information that was previously acquired. Storing refers to the process of placing newly acquired information into memory, which is modified in the brain for easier storage. Encoding this information makes the process of retrieval easier for the brain where it can be recalled and brought into conscious thinking. Modern memory psychology differentiates between the two distinct types of memory storage: short-term memory and long-term memory. Several models of memory have been proposed over the past century, some of them suggesting different relationships between short- and long-term memory to account for different ways of storing memory.
In psychology, context-dependent memory is the improved recall of specific episodes or information when the context present at encoding and retrieval are the same. In a simpler manner, "when events are represented in memory, contextual information is stored along with memory targets; the context can therefore cue memories containing that contextual information". One particularly common example of context-dependence at work occurs when an individual has lost an item in an unknown location. Typically, people try to systematically "retrace their steps" to determine all of the possible places where the item might be located. Based on the role that context plays in determining recall, it is not at all surprising that individuals often quite easily discover the lost item upon returning to the correct context. This concept is heavily related to the encoding specificity principle.
Serial reaction time (SRT) is a commonly used parameter in the measurement of unconscious learning processes. This parameter is operationalised through a SRT task, in which participants are asked to repeatedly respond to a fixed set of stimuli in which each cue signals that a particular response needs to be made. Unbeknownst to the participant, there are probabilities governing the occurrence of the cues as they appear in both a repeated sequence and randomised order, thus required responses following one cue have some predictability, influencing reaction-time. As a result, reaction-time to these cues becomes increasingly fast as subjects learn and utilise these transition probabilities.
Haptic memory is the form of sensory memory specific to touch stimuli. Haptic memory is used regularly when assessing the necessary forces for gripping and interacting with familiar objects. It may also influence one's interactions with novel objects of an apparently similar size and density. Similar to visual iconic memory, traces of haptically acquired information are short lived and prone to decay after approximately two seconds. Haptic memory is best for stimuli applied to areas of the skin that are more sensitive to touch. Haptics involves at least two subsystems; cutaneous, or everything skin related, and kinesthetic, or joint angle and the relative location of body. Haptics generally involves active, manual examination and is quite capable of processing physical traits of objects and surfaces.
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.
The encoding specificity principle is the general principle that matching the encoding contexts of information at recall assists in the retrieval of episodic memories. It provides a framework for understanding how the conditions present while encoding information relate to memory and recall of that information.
Retrieval-induced forgetting (RIF) is a memory phenomenon where remembering causes forgetting of other information in memory. The phenomenon was first demonstrated in 1994, although the concept of RIF has been previously discussed in the context of retrieval inhibition.
During every moment of an organism's life, sensory information is being taken in by sensory receptors and processed by the nervous system. Sensory information is stored in sensory memory just long enough to be transferred to short-term memory. Humans have five traditional senses: sight, hearing, taste, smell, touch. Sensory memory (SM) allows individuals to retain impressions of sensory information after the original stimulus has ceased. A common demonstration of SM is a child's ability to write letters and make circles by twirling a sparkler at night. When the sparkler is spun fast enough, it appears to leave a trail which forms a continuous image. This "light trail" is the image that is represented in the visual sensory store known as iconic memory. The other two types of SM that have been most extensively studied are echoic memory, and haptic memory; however, it is reasonable to assume that each physiological sense has a corresponding memory store. For example, children have been shown to remember specific "sweet" tastes during incidental learning trials but the nature of this gustatory store is still unclear. However, sensory memories might be related to a region of the thalamus, which serves as a source of signals encoding past experiences in the neocortex.
Elaborative encoding is a mnemonic system that uses some form of elaboration, such as an emotional cue, to assist in the retention of memories and knowledge. In this system one attaches an additional piece of information to a memory task which makes it easier to recall. For instance, one may recognize a face easier if character traits are also imparted about the person at the same time.