Ghana Research Reactor-1

Last updated
GHARR-1
Ghana adm location map.svg
Red pog.svg
Accra, Ghana
Operating Institution Ghana Atomic Energy Commission
Location Accra, Ghana
Coordinates 5°33′N0°12′W / 5.550°N 0.200°W / 5.550; -0.200
Type Miniature Neutron Source Reactor
Power30 kW (thermal)
Construction and Upkeep
Construction Began1994
Time to Construct1 year
First CriticalityDecember 17, 1994
Annual Upkeep Cost1.5 M $US
Technical Specifications
Max Thermal Flux 1.012 s−1 cm−2
Max Fast Flux 1.2·1012 s−1 cm−2
Cooling Light water
Neutron Moderator Light water
Neutron Reflector Beryllium

The Ghana Research Reactor-1 (GHARR-1) is a nuclear research reactor located in Accra, Ghana and is the only nuclear reactor in the country. It is operated by the National Nuclear Research Institute, a sub-division of the Ghana Atomic Energy Commission. The reactor is a commercial version of the Chinese Miniature Neutron Source Reactor (MNSR) design. The reactor had its first criticality on December 17, 1994. [1]

Contents

Description

GHARR-1 is a light water reactor with a maximum thermal power of 30 kW, a maximum thermal flux of 1012 s−1cm−2, and a maximum fast flux of 1.2·1012 s−1cm−2. [2] Beryllium is used as a reflector and the reactor is cooled by natural convection. [1] Low enriched fuel is used, although the reactor was initially designed for 90.2% enriched uranium. [3] The reactor core has 347 fuel rods.

The reactor is mainly used as a research tool, including for neutron activation analysis and reactor physics experiments. [4] Research has indicated that GHARR-1 could be used to produce the radionuclide Technetium-99 in the future. [5] It is also used for education of university students at the University of Ghana School of Nuclear and Allied Sciences.

Conversion to low enriched uranium

The miniature neutron source reactor (MNSR) design originally operated with high enriched uranium (HEU), typically 90% uranium-235 or greater. In 2006, the International Atomic Energy Agency (IAEA) developed a Collaborative Research Project (CRP) and eventually a MNSR working group to coordinate conversion to low enriched uranium (LEU) fuel, [6] typically defined as lower than 20% Uranium-235. HEU is associated with increased proliferation risks, as it can be more easily diverted to non-peaceful uses of atomic energy than LEU. The Ghana Atomic Energy Commission is a member of the MNSR working group, and has successfully transitioned GHARR-1 to low enriched fuel.

Ghana was the first country outside of China to successfully convert their MNSR reactor to LEU. [7] The HEU core was removed in August 2016 [3] and the operation was completed in 2017. [6] The original nuclear fuel was UAl4 with Al-303-1 cladding while the new LEU fuel is uranium dioxide at 13% enrichment with Zircaloy-4 cladding. [8]

See also

Related Research Articles

Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.

<span class="mw-page-title-main">Tuwaitha Nuclear Research Center</span> Nuclear facility site near Baghdad, Iraq

The Baghdad Nuclear Research Facility adjacent to the Tuwaitha "Yellow Cake Factory" or Tuwaitha Nuclear Research Center contains the remains of nuclear reactors bombed by Iran in 1980, Israel in 1981 and the United States in 1991. It was used as a storage facility for spent reactor fuel and industrial and medical wastes. The radioactive material would not be useful for a fission bomb, but could be used in a dirty bomb. Following the 2003 invasion of Iraq, the facility was heavily looted by hundreds of Iraqis, though it is unclear what was taken.

<span class="mw-page-title-main">Petten nuclear reactor</span>

The Petten High Flux Reactor (HFR) is a nuclear research reactor located in Petten, Netherlands. The HFR is on the premises of the Petten research centre and it is a high flux reactor. It is owned by the Joint Research Centre (JRC) and managed by the Nuclear Research and Consultancy Group (NRG).

<span class="mw-page-title-main">Aqueous homogeneous reactor</span> Type of nuclear reactor

Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous". The water can be either heavy water or ordinary (light) water, both of which need to be very pure.

<span class="mw-page-title-main">Research reactor</span> Nuclear device not intended for power or weapons

Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.

<span class="mw-page-title-main">SLOWPOKE reactor</span> Family of nuclear research reactors

The SLOWPOKE is a family of low-energy, tank-in-pool type nuclear research reactors designed by Atomic Energy of Canada Limited (AECL) beginning in the late 1960s. John W. Hilborn is the scientist most closely associated with their design. They are beryllium-reflected with a very low critical mass, but provide neutron fluxes higher than available from a small particle accelerator or other radioactive sources.

The Megatons to Megawatts Program, also called the United States-Russia Highly Enriched Uranium Purchase Agreement, was an agreement between Russia and the United States whereby Russia converted 500 metric tons of "excess" weapons-grade uranium into 15,000 metric tons of low enriched uranium, which was purchased by the US for use in its commercial nuclear power plants. The official name of the program is the "Agreement between the Government of the Russian Federation and the Government of the United States of America Concerning the Disposition of Highly-Enriched Uranium Extracted from Nuclear Weapons", dated February 18, 1993. Under this Agreement, Russia agreed to supply the United States with low-enriched uranium (LEU) obtained from high-enriched uranium (HEU) found to be in excess of Russian defense purposes. The United States agreed to purchase the low-enriched uranium fuel.

The Chinese built Miniature Neutron Source reactor (MNSR) is a small and compact research reactor modeled on the Canadian HEU SLOWPOKE-2 design.

A nuclear fuel bank is reserve of low enriched uranium (LEU) for countries that need a backup source of LEU to fuel their nuclear reactors. Countries that do have enrichment technology would donate enriched fuel to a "bank", from which countries not possessing enrichment technology would obtain fuel for their power reactors.

<span class="mw-page-title-main">SAFARI-1</span> South African nuclear research reactor

SAFARI-1 is a 20 MW light water-cooled, beryllium reflected, pool-type research reactor, initially used for high level nuclear physics research programmes and was commissioned in 1965.

<span class="mw-page-title-main">Maria reactor</span>

The Maria reactor is Poland's second nuclear research reactor and is the only one still in use. It is located at Narodowe Centrum Badań Jądrowych (NCBJ) at Świerk-Otwock, near Warsaw and named in honor of Maria Skłodowska-Curie. It is the only reactor of Polish design.

<span class="mw-page-title-main">MIT Nuclear Research Reactor</span> Research nuclear reactor

The MIT Nuclear Research Reactor (MITR) serves the research purposes of the Massachusetts Institute of Technology. It is a tank-type 6 megawatt reactor that is moderated and cooled by light water and uses heavy water as a reflector. It is the second largest university-based research reactor in the U.S. and has been in operation since 1958. It is the fourth-oldest operating reactor in the country.

<span class="mw-page-title-main">Nuclear facilities in Iran</span>

Iran's nuclear program is made up of a number of nuclear facilities, including nuclear reactors and various nuclear fuel cycle facilities.

President Adly Mansour announced on 7 November 2013 that Egypt was restarting its nuclear power program in El Dabaa; a deal was reached with the residents in which it was agreed that a residential area will also be built. The Egyptian minister of electricity, Ahmed Emam, has called the project "necessary" because of a small amount of renewable energy sources and not enough fuel.

<span class="mw-page-title-main">Pakistan Atomic Research Reactor</span>

The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.

<span class="mw-page-title-main">Washington State University Reactor</span> Nuclear research reactor in Washington State University

The Washington State University Reactor (WSUR) is housed in the Dodgen Research Facility, and was completed in 1961. The (then) Washington State College Reactor was the brainchild of Harold W. Dodgen, a former researcher on the Manhattan Project where he earned his PhD from 1943 to 1946. He secured funding for the ambitious 'Reactor Project' from the National Science Foundation, the Atomic Energy Commission, and the College administration totaling $479,000. Dodgen's basis for constructing a reactor was that the College was primely located as a training facility for the Hanford site, as well as Idaho National Laboratory because there was no other research reactor in the West at that time. After completing the extensive application and design process with the help of contractors from General Electric they broke ground in August 1957 and the first criticality was achieved on March 7, 1961 at a power level of 1W. They gradually increased power over the next year to achieve their maximum licensed operating power of 100 kW.

Phoenix, formerly known as Phoenix Nuclear Labs, is a company specializing in neutron generator technology located in Monona, Wisconsin. Founded in 2005, the company develops nuclear and particle accelerator technologies for application in medicine, defense and energy. Phoenix has held contracts with the U.S. Army, the U.S. Department of Energy, the U.S. Department of Defense and the U.S. Air Force. Phoenix developed a proprietary gas target neutron generator technology and has designed and built a number of particle accelerator-related technologies.

ETRR-1 or ET-RR-1, is the first nuclear reactor in Egypt supplied by the USSR in 1958. The reactor is owned and operated by Egyptian Atomic Energy Authority (AEA) at the Nuclear Research Center in Inshas, 40–60 kilometres (25–37 mi) northeast of Cairo.

ETRR-2 or ET-RR-2, or is the second nuclear reactor in Egypt supplied by the Argentine company Investigacion Aplicada (INVAP) in 1992. The reactor is owned and operated by Egyptian Atomic Energy Authority (EAEA) at the Nuclear Research Center in Inshas, 60 kilometres (37 mi) northeast of Cairo.

The Nigeria research reactor (NIRR-1) is a nuclear research reactor located in Zaria, Nigeria. The reactor is located at the Centre for Energy Research and Training (CERT), part of Ahmadu Bello University. The reactor had its first criticality in 2004 and is the only nuclear reactor currently operating in Nigeria.

References

  1. 1 2 BSS, IAEA - MTIT -. "Header Information - RRDB - IAEA". nucleus.iaea.org. Retrieved 2018-02-15.
  2. "Ghana, Republic of: Research Reactor Details - GHARR-1". www-naweb.iaea.org. Retrieved 2023-01-11.
  3. 1 2 "Ghanaian reactor at full power after fuel conversion". www.world-nuclear-news.org. Retrieved 2018-02-15.
  4. Amuasi, J. H.; Schandorf, C.; Yeboah, J. "Safety of Ghana Research Reactor (GHARR-1)" (PDF). International Atomic Energy Agency. Retrieved February 14, 2017.
  5. Akaho, E. H. K.; Maaku, B. T.; Anim-Sampong, S. (1998). "A mathematical model for predicting activities of 99Mo, 99mTc and 99Tc: with application to Ghana Research Reactor-1". Ghana Journal of Chemistry. 4 (1): 7–13. ISSN   0855-0484.
  6. 1 2 (IAEA), International Atomic Energy Agency. "MNSR - IAEA NEFW". www.iaea.org. Retrieved 2018-02-15.
  7. "Supporting Nuclear Non-Proliferation: Ghana Converts Research Reactor from HEU to LEU Fuel". 2017-08-29. Retrieved 2018-02-15.
  8. Odoi, H. C.; Gbadago, J. K.; Abrefah, R. G.; Birikorang, S. A.; Sogbadjo, B. B. M.; Ampomah-Amoako, E.; Morman, J. "Efforts Made for the Conversion of Ghana's MNSR to LEU" (PDF). 35th International Meeting on Reduced Enrichment for Research and Test Reactors.