Established | 1979 |
---|---|
President | Deepak Srivastava |
Faculty | 30 |
Staff | 450 |
Budget | $80 million |
Address | 1650 Owens St., San Francisco, CA |
Location | , , |
Coordinates | 37°46′03″N122°23′39″W / 37.7676°N 122.3941°W |
Website | gladstoneinstitutes |
Gladstone Institutes is an American independent, non-profit biomedical research organization whose focus is to better understand, prevent, treat and cure cardiovascular, viral and neurological conditions such as heart failure, HIV/AIDS and Alzheimer's disease. [1] Its researchers study these diseases using techniques of basic and translational science. [2] Another focus at Gladstone is building on the development of induced pluripotent stem cell technology by one of its investigators, 2012 Nobel Laureate Shinya Yamanaka, to improve drug discovery, personalized medicine and tissue regeneration. [3]
Founded in 1979, Gladstone is academically affiliated with the University of California, San Francisco (UCSF), and located adjacent to UCSF's Mission Bay campus. The organization comprises five major institutes, as well as multiple centers focused on various areas of research.
The current president of the institute is Deepak Srivastava.
Gladstone Institutes was founded in 1979 as a research and training facility housed at San Francisco General Hospital. Under inaugural president Robert Mahley [4] —a cardiovascular scientist recruited from the National Institutes of Health [5] —the institutes was launched with a $8 million trust from the late commercial real estate developer, J. David Gladstone. [6]
In 2004 the Gladstone Institutes moved to a new facility in San Francisco's Mission Bay, San Francisco neighborhood. [7]
Dr. Mahley stepped down as president in 2010 to return to active research, and was replaced by R. Sanders Williams (former Dean of the School of Medicine at Duke University). [8] Deepak Srivastava became the institute's third president in January 2018. [9]
In 2011, the S.D. Bechtel, Jr. Foundation helped launch the Center for Comprehensive Alzheimer's Disease Research, while the Roddenberry Foundation helped launch the Roddenberry Stem Cell Center for Biology and Medicine. [3] Also in 2011, the independent and philanthropic Gladstone Foundation formed with the mission of expanding the financial resources for the institutes.[ citation needed ]
Gladstone Institutes consists of five institutes:
Gladstone is also home to eight centers for researchers from different institutes to collaborate. These centers focus on stem and iPS cell research, as well as neurodegenerative disease research and therapeutics. [10]
Gladstone cardiovascular scientists research the spectrum of cardiovascular disease, utilizing developmental, chemical, and stem cell biology approaches, as well as genomics techniques, across a variety of research programs and institutes. Their research has included:
In 1991, Gladstone expanded its focus to include virology and immunology in response to the HIV/AIDS crisis. Since then the institute has also studied hepatitis C, Zika virus, and COVID-19. [13] In 2011, Gladstone launched a $25 million initiative around HIV and aging. [14]
Their research has included:
In 2020, two new institutes were formed; the Gladstone Institute of Virology, and the Gladstone-UCSF Institute of Genomic Immunology, to study how viruses interact with human cells to cause disease. [23]
The Institute of Virology has been involved in research regarding the COVID-19 virus, including its long-term effects on the heart, [24] and studying samples of SARS-CoV-2 variations appearing in California, and their resistances to the Moderna and Pfizer vaccines. [25] [26]
Research at Gladstone focuses on major neurological diseases including: Alzheimer's disease, Parkinson's disease, frontotemporal dementia (FTD), Huntington's disease, amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) and multiple sclerosis. This research incorporates animal models, electrophysiology, behavioral testing and automated high-throughput analyses. In addition, Gladstone investigators seek to accelerate the movement of basic science discoveries into clinical trials with efforts to bridge the so-called "Valley of Death". The research features an emphasis on the common threads linking the various diseases and treatments for them.
Current research programs include:
Another focus at Gladstone is building on the development of induced pluripotent stem cell technology by one of its senior investigators, 2012 Nobel Laureate Shinya Yamanaka. In 2006, Yamanaka discovered the technology, by which ordinary differentiated adult cells (such as fibroblasts from skin) could be "reprogrammed" into a pluripotent state—i.e., a state similar to embryonic stem cells, which are capable of developing into virtually any cell type in the human body. His discovery of induced pluripotent stem cells, or iPS cells, has since revolutionized the fields of developmental biology, stem cell research and both personalized and regenerative medicine. [35] In 2012 Yamanaka was awarded the Nobel Prize in Physiology or Medicine. [36]
Since Yamanaka's discovery, scientists at Gladstone have used iPS technology to research solutions for Huntington's disease and Alzheimer's disease, as well as create a new model for testing HIV/AIVD vaccines. [37]
Other work at the Data Science & Biotechnology Institute include:
The Gladstone Center for Translational Advancement was formed in 2017, and focuses on drug repositioning; repurposing already-approved drugs for new uses and clinical trials, to speed up (and lower the cost of) drug development. [42]
On November 22, 2024 the U.S House Education and Workforce and the House Energy and Commerce Committees announced they are jointly investigating the Gladstone Institutes for its handling of antisemitic incidents. [43] The letter sent by the committee leadership to Deepak Srivastava and the Gladstone Institute cites several instances of antisemitic behavior conducted by faculty and staff, coupled with either no response from the administration or allegedly retaliatory actions against the complainants. [44] These examples of antisemitic activities include: [45]
Current researchers at the institute include:
Former researchers:
Stanley Ben Prusiner is an American neurologist and biochemist. He is the director of the Institute for Neurodegenerative Diseases at University of California, San Francisco (UCSF). Prusiner discovered prions, a class of infectious self-reproducing pathogens primarily or solely composed of protein, a scientific theory considered by many as a heretical idea when first proposed. He received the Albert Lasker Award for Basic Medical Research in 1994 and the Nobel Prize in Physiology or Medicine in 1997 for research on prion diseases developed by him and his team of experts beginning in the early 1970s.
A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.
Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He is a professor and the director emeritus of Center for iPS Cell Research and Application, Kyoto University; as a senior investigator at the UCSF-affiliated Gladstone Institutes in San Francisco, California; and as a professor of anatomy at University of California, San Francisco (UCSF). Yamanaka is also a past president of the International Society for Stem Cell Research (ISSCR).
Transmembrane protein 106B is a protein that is encoded by the TMEM106B gene. It is found primarily within neurons and oligodendrocytes in the central nervous system with its subcellular location being in lysosomal membranes. TMEM106B helps facilitate important functions for maintaining a healthy lysosome, and therefore certain mutations and polymorphisms can lead to issues with proper lysosomal function. Lysosomes are in charge of clearing out mis-folded proteins and other debris, and thus, play an important role in neurodegenerative diseases that are driven by the accumulation of various mis-folded proteins and aggregates. Due to its impact on lysosomal function, TMEM106B has been investigated and found to be associated to multiple neurodegenerative diseases.
John Quinn Trojanowski was an American academic research neuroscientist specializing in neurodegeneration. He and his partner, Virginia Man-Yee Lee, MBA, Ph.D., are noted for identifying the roles of three proteins in neurodegenerative diseases: tau in Alzheimer's disease, alpha-synuclein in Parkinson's disease, and TDP-43 in Amyotrophic Lateral Sclerosis (ALS) and frontotemporal degeneration.
Anne Buckingham Young is an American physician and neuroscientist who has made major contributions to the study of neurodegenerative diseases, with a focus on movement disorders like Huntington's disease and Parkinson's disease. Young completed her undergraduate studies at Vassar College and earned a dual MD/PhD from Johns Hopkins Medical School. She has held faculty positions at University of Michigan and Harvard University. She became the first female chief of service at Massachusetts General Hospital when she was appointed Chief of Neurology in 1991. She retired from this role and from clinical service in 2012. She is a member of many academic societies and has won numerous awards. Young is also the only person to have been president of both the international Society for Neuroscience and the American Neurological Association.
HIV/AIDS research includes all medical research that attempts to prevent, treat, or cure HIV/AIDS, as well as fundamental research about the nature of HIV as an infectious agent and AIDS as the disease caused by HIV.
The Krembil Research Institute, formerly known as the Toronto Western Research Institute, is an academic medical research institute in Toronto. It is one of the largest research institutes in Canada focusing on human neurological disease.
Virginia Man-Yee Lee is a Chinese-born American biochemist and neuroscientist who specializes in the research of Alzheimer's disease. She is the current John H. Ware 3rd Endowed Professor in Alzheimer's Research at the Department of Pathology and Laboratory Medicine, and the director of the Center for Neurodegenerative Disease Research and co-director of the Marian S. Ware Alzheimer Drug Discovery Program at the Perelman School of Medicine, University of Pennsylvania. She received the 2020 Breakthrough Prize in Life Sciences.
Nevan J. Krogan is a Canadian molecular and systems biologist. He is a professor and the Director of the Quantitative Biosciences Institute (QBI) at the University of California San Francisco (UCSF), as well as a senior investigator at the J. David Gladstone Institutes.
Giovanna Rachele Mallucci is van Geest Professor of Clinical Neurosciences at the University of Cambridge in England and associate director of the UK Dementia Research Institute at the University of Cambridge. She is a specialist in neurodegenerative diseases.
Benjamin Wolozin is an American pharmacologist and neurologist currently at Boston University School of Medicine. He is also an Elected Fellow of the American Association for the Advancement of Science.
Thea D. Tlsty is an American pathologist and professor of pathology at the University of California, San Francisco (UCSF). She is known for her research in cancer biology and her involvement in the discovery of cells that may be at the origin of metaplastic cancer, an invasive form of breast cancer.
Çağhan Kızıl is a Turkish/German neuroscientist and geneticist, and Associate Professor of Neurological Sciences at the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at the Columbia University Vagelos College of Physicians and Surgeons Columbia University Irving Medical Center.
Nancy M. Bonini is an American neuroscientist and geneticist, best known for pioneering the use of Drosophila as a model organism to study neurodegeneration of the human brain. Using the Drosophila model approach, Bonini's laboratory has identified genes and pathways that are important in the development and progression of neurodegenerative diseases such as Amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, as well as aging, neural injury and regeneration, and response to environmental toxins.
Phenserine is a synthetic drug which has been investigated as a medication to treat Alzheimer's disease (AD), as the drug exhibits neuroprotective and neurotrophic effects.
Katerina Akassoglou is a neuroimmunologist who is a Senior Investigator and Director of In Vivo Imaging Research at the Gladstone Institutes. Akassoglou holds faculty positions as a Professor of Neurology at the University of California, San Francisco. Akassoglou has pioneered investigations of blood-brain barrier integrity and development of neurological diseases. She found that compromised blood-brain barrier integrity leads to fibrinogen leakage into the brain inducing neurodegeneration. Akassoglou is internationally recognized for her scientific discoveries.
David Rowitch, FMedSci, FRS is an American physician-scientist known for his contributions to developmental glial biology and treatment of white matter diseases. He heads the Department of Paediatrics at the University of Cambridge and is an adjunct professor of pediatrics at the University of California San Francisco (UCSF).
Li Gan is a neuroscientist and professor at Weill Cornell Medical College. She is known for her discovery of pathogenic tau protein acetylation in tauopathies and mechanisms of microglia dysfunction in neurodegeneration.
Gary E. Gibson is an American neuroscientist specializing in mitochondrial biology and metabolic dysfunction related to neurodegeneration. He serves as the Lab Director of the Laboratory for Mitochondrial Biology and Metabolic Dysfunction in Neurodegeneration at the Burke Neurological Institute and holds the position of Professor of Neuroscience with tenure at the Brain and Mind Research Institute of Weill Cornell Medicine. He also served as associate director of the Dementia Research Service.
{{cite web}}
: CS1 maint: numeric names: authors list (link)