Glauber multiple scattering theory

Last updated

The Glauber multiple scattering theory [1] [2] is a framework developed by Roy J. Glauber to describe the scattering of particles off composite targets, such as nuclei, in terms of multiple interactions between the probing particle and the individual constituents of the target. It is widely used [3] in high-energy physics, nuclear physics, and hadronic physics, where quantum coherence effects and multiple scatterings are significant.

Contents

Description

The basic idea of the Glauber formalism is that the incident projectile is assumed to interact with each component of the complex target in turn as it moves in a straight line through the target. [4] This assumes the eikonal approximation, viz that the projectile's trajectory is nearly straight-line, with only small-angle deflections due to interactions with the target component. The theory accounts for the fact that a projectile may interact with more than one constituent (e.g., the nucleons of a target nucleus) as it passes through the target nucleus. These interactions are treated coherently. The scattering amplitude is taken as the sum over contributions from multiple scatterings. This is done using the optical model, where the target nucleus is treated as a complex potential. In fact, coherent superposition of scattering amplitudes from all possible paths through the nucleus is a fundamental aspect, leading to phenomena like diffraction patterns. The theory often uses Gaussian or Woods-Saxon distributions for nuclear densities.

Formalism

The elastic scattering amplitude in Glauber theory is given by: [5]

where: is the momentum transfer, is the impact parameter, is the eikonal phase shift representing the integrated interaction potential. For a nucleus, is expressed as the sum of contributions from individual nucleons, where is the transverse position of nucleon j.

At high energies, the above formalism simplifies by focusing on transverse geometry and neglecting effects like spin or low-energy dynamics. Relativistic corrections were not part of the original formalism, but have been included in modern applications when they are necessary (high-energy cases) [6] Other simplifications are that the theory assumes independent scatterings, neglects correlations between nucleons and, as an effective modeling, does not account for some QCD effects directly, which are significant at very small distances.

Applications

The Glauber theory has been applied to:

Elastic and inelastic scattering of protons, neutrons, and other particles off nuclei.

Heavy-ion collisions to describe the initial geometry of collisions and energy deposition.

High-energy diffraction in hadron-hadron or hadron-nucleus scattering.

EMC effect, specifically nuclear shadowing, in deep inelastic scattering.

Color transparency which describes how much of the projectile penetrates the target nucleus without being absorbed or deflected significantly.

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Relativistic Heavy Ion Collider</span> Particle accelerator at Brookhaven National Laboratory in Upton, New York, USA

The Relativistic Heavy Ion Collider is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US. By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons, the spin structure of the proton is explored.

<span class="mw-page-title-main">Nuclear force</span> Force that acts between the protons and neutrons of atoms

The nuclear force is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electrostatic force. The nuclear force binds nucleons into atomic nuclei.

In physics, a Feshbach resonance can occur upon collision of two slow atoms, when they temporarily stick together forming an unstable compound with short lifetime. It is a feature of many-body systems in which a bound state is achieved if the coupling(s) between at least one internal degree of freedom and the reaction coordinates, which lead to dissociation, vanish. The opposite situation, when a bound state is not formed, is a shape resonance. It is named after Herman Feshbach, a physicist at MIT.

Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows one to study the low-energy dynamics of QCD on the basis of this underlying chiral symmetry.

<span class="mw-page-title-main">Roy J. Glauber</span> American theoretical physicist (1925–2018)

Roy Jay Glauber was an American theoretical physicist. He was the Mallinckrodt Professor of Physics at Harvard University and Adjunct Professor of Optical Sciences at the University of Arizona. Born in New York City, he was awarded one half of the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence", with the other half shared by John L. Hall and Theodor W. Hänsch. In this work, published in 1963, he created a model for photodetection and explained the fundamental characteristics of different types of light, such as laser light and light from light bulbs. His theories are widely used in the field of quantum optics. In statistical physics he pioneered the study of the dynamics of first-order phase transitions, since he first defined and investigated the stochastic dynamics of an Ising model in a paper published in 1963. He served on the National Advisory Board of the Center for Arms Control and Non-Proliferation, the research arms of Council for a Livable World.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

<span class="mw-page-title-main">Mainz Microtron</span> Particle physics facility

The Mainz Microtron, abbreviated MAMI, is a microtron which provides a continuous wave, high intensity, polarized electron beam with an energy up to 1.6 GeV. MAMI is the core of an experimental facility for particle, nuclear and X-ray radiation physics at the Johannes Gutenberg University in Mainz (Germany). It is one of the largest campus-based accelerator facilities for basic research in Europe. The experiments at MAMI are performed by about 200 physicists of many countries organized in international collaborations.

<span class="mw-page-title-main">Channelling (physics)</span> Process constraining a charged particles path through a crystal

In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid.

In elementary particle physics and mathematical physics, in particular in effective field theory, a form factor is a function that encapsulates the properties of a certain particle interaction without including all of the underlying physics, but instead, providing the momentum dependence of suitable matrix elements. It is further measured experimentally in confirmation or specification of a theory—see experimental particle physics.

<span class="mw-page-title-main">CDHS experiment</span>

CDHS was a neutrino experiment at CERN taking data from 1976 until 1984. The experiment was officially referred to as WA1. CDHS was a collaboration of groups from CERN, Dortmund, Heidelberg, Saclay and later Warsaw. The collaboration was led by Jack Steinberger. The experiment was designed to study deep inelastic neutrino interactions in iron.

<span class="mw-page-title-main">Impact parameter</span> Distance between a projectile path and center of a potential field affecting it

In physics, the impact parameterb is defined as the perpendicular distance between the path of a projectile and the center of a potential field U(r) created by an object that the projectile is approaching (see diagram). It is often referred to in nuclear physics (see Rutherford scattering) and in classical mechanics.

<span class="mw-page-title-main">Light front quantization</span> Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon Van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

<span class="mw-page-title-main">James Bjorken</span> American physicist (1934–2024)

James Daniel "BJ" Bjorken was an American theoretical physicist. He was a Putnam Fellow in 1954, received a BS in physics from MIT in 1956, and obtained his PhD from Stanford University in 1959. Bjorken was a visiting scholar at the Institute for Advanced Study in the fall of 1962. He was also emeritus professor in the SLAC Theory Group at the Stanford Linear Accelerator Center, and was a member of the Theory Department of the Fermi National Accelerator Laboratory (1979–1989).

<span class="mw-page-title-main">Light-front quantization applications</span> Quantization procedure in quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is a Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.

<span class="mw-page-title-main">Non-linear inverse Compton scattering</span> Electron-many photon scattering

Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon during the interaction with a charged particle, in many cases an electron. This process is an inverted variant of Compton scattering since, contrary to it, the charged particle transfers its energy to the outgoing high-energy photon instead of receiving energy from an incoming high-energy photon. Furthermore, differently from Compton scattering, this process is explicitly non-linear because the conditions for multiphoton absorption by the charged particle are reached in the presence of a very intense electromagnetic field, for example, the one produced by high-intensity lasers.

In quantum field theory, a sum rule is a relation between a static quantity and an integral over a dynamical quantity. Therefore, they have a form such as:

In particle physics, the axial current, also denoted the pseudo-vector or chiral current, is the conserved current associated to the chiral symmetry or axial symmetry of a system.

Color transparency is a phenomenon observed in high-energy particle physics, where hadrons created in a nucleus propagate through that nucleus with less interaction than expected. It suggests that hadrons are first created with a small size in the nucleus, and then grow to their nominal size. Here, color refers to the color charge, the property of quarks and gluons that determines how strongly they interact through the nuclear strong force.

References

  1. Glauber, R.J. (1959). "High energy collision theory" (PDF). Brittin WE, Dunham LG, eds. Lectures in Theoretical Physics, Volume I. Wiley-Interscience.
  2. Glauber, R.J. (1970). "Theory of high energy hadron-nucleus collisions". 3rd International Conference on High-Energy Physics and Nuclear Structure.
  3. Bauer, T. H.; Spital, R. D.; Yennie, D.R..; Pipkin, F. M. (1978). "The Hadronic Properties of the Photon in High-Energy Interactions". Rev.Mod.Phys. 50: 261. doi:10.1103/PhysRevLett.47.297.
  4. Newton, R. G. (1982). "Scattering Theory of Waves and Particles (McGraw-Hill, 1982)". doi:10.1007/978-3-642-88128-2.{{cite journal}}: Cite journal requires |journal= (help)
  5. Wong, Cheuk-Yin (1984). "Introduction to High-Energy Heavy-Ion Collisions". doi:10.1142/1128.{{cite journal}}: Cite journal requires |journal= (help)
  6. Frankfurt, L.; Koepf, W.; Mutzbauer, J.; Piller, G.; Sargsian, M.; Strikman, M. (1997). "Coherent photoproduction and leptoproduction of vector mesons from deuterium". Nucl. Phys. A. 622: 511. doi:10.1016/S0375-9474(97)80697-5.