# Momentum transfer

Last updated

In particle physics, wave mechanics and optics, momentum transfer is the amount of momentum that one particle gives to another particle. Particle physics is a branch of physics that studies the nature of the particles that constitute matter and radiation. Although the word particle can refer to various types of very small objects, particle physics usually investigates the irreducibly smallest detectable particles and the fundamental interactions necessary to explain their behaviour. By our current understanding, these elementary particles are excitations of the quantum fields that also govern their interactions. The currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model. Thus, modern particle physics generally investigates the Standard Model and its various possible extensions, e.g. to the newest "known" particle, the Higgs boson, or even to the oldest known force field, gravity. In physics, mathematics, and related fields, a wave is a disturbance of a field in which a physical attribute oscillates repeatedly at each point or propagates from each point to neighboring points, or seems to move through space. Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

## Contents

In the simplest example of scattering of two colliding particles with initial momenta ${\vec {p}}_{i1},{\vec {p}}_{i2}$ , resulting in final momenta ${\vec {p}}_{f1},{\vec {p}}_{f2}$ , the momentum transfer is given by Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more paths due to localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections.

${\vec {q}}={\vec {p}}_{i1}-{\vec {p}}_{f1}={\vec {p}}_{f2}-{\vec {p}}_{i2}$ where the last identity expresses momentum conservation. Momentum transfer is an important quantity because $\Delta x=\hbar /|q|$ is a better measure for the typical distance resolution of the reaction than the momenta themselves.

## Wave mechanics and optics

A wave has a momentum $p=\hbar k$ and is a vectorial quantity. The difference of the momentum of the scattered wave to the incident wave is called momentum transfer. The wave number k is the absolute of the wave vector $k=q/\hbar$ and is related to the wavelength $k=2\pi /\lambda$ . Often, momentum transfer is given in wavenumber units in reciprocal length $Q=k_{f}-k_{i}$ In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important: Its magnitude is either the wavenumber or angular wavenumber of the wave, and its direction is ordinarily the direction of wave propagation. In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is thus the inverse of the spatial frequency. Wavelength is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Reciprocal length or inverse length is a measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre (m−1), the reciprocal centimetre or inverse centimetre (cm−1), and, in optics, the dioptre.

### Diffraction

The momentum transfer plays an important role in the evaluation of neutron, X-ray and electron diffraction for the investigation of condensed matter. Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, $k_{f}$ and $k_{i}$ , respectively, are equal and just the direction changes by a reciprocal lattice vector $G=Q=k_{f}-k_{i}$ with the relation to the lattice spacing $G=2\pi /d$ . As momentum is conserved, the transfer of momentum occurs to crystal momentum. Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples.

Electron diffraction refers to the wave nature of electrons. However, from a technical or practical point of view, it may be regarded as a technique used to study matter by firing electrons at a sample and observing the resulting interference pattern. This phenomenon is commonly known as wave–particle duality, which states that a particle of matter can be described as a wave. For this reason, an electron can be regarded as a wave much like sound or water waves. This technique is similar to X-ray and neutron diffraction.

Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the kinetic energy of a particle is conserved in the center-of-mass frame, but its direction of propagation is modified. Furthermore, while the particle's kinetic energy in the center-of-mass frame is constant, its energy in the lab frame is not. Generally, elastic scattering describes a process where the total kinetic energy of the system is conserved. During elastic scattering of high-energy subatomic particles, linear energy transfer (LET) takes place until the incident particle's energy and speed has been reduced to the same as its surroundings, at which point the particle is "stopped."

The presentation in $Q$ -space is generic and does not depend on the type of radiation and wavelength used but only on the sample system, which allows to compare results obtained from many different methods. Some established communities such as powder diffraction employ the diffraction angle $2\theta$ as the independent variable, which worked fine in the early years when only a few characteristic wavelengths such as Cu-K$\alpha$ were available. The relationship to $Q$ -space is In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

$Q={\frac {4\pi \sin \left(\theta \right)}{\lambda }}$ and basically states that larger $2\theta$ corresponds to larger $Q$ .

## Related Research Articles Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is defined as the bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1660. In the physical sciences, the wavenumber is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. Whereas temporal frequency can be thought of as the number of waves per unit time, wavenumber is the number of waves per unit distance. Synchrotron radiation is the electromagnetic radiation emitted when charged particles are accelerated radially, i.e., when they are subject to an acceleration perpendicular to their velocity. It is produced, for example, in synchrotrons using bending magnets, undulators and/or wigglers. If the particle is non-relativistic, then the emission is called cyclotron emission. If, on the other hand, the particles are relativistic, sometimes referred to as ultrarelativistic, the emission is called synchrotron emission. Synchrotron radiation may be achieved artificially in synchrotrons or storage rings, or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization and the frequencies generated can range over the entire electromagnetic spectrum which is also called continuum radiation.

In physics, Bragg's law, or Wulff–Bragg's condition, a special case of Laue diffraction, gives the angles for coherent and incoherent scattering from a crystal lattice. When X-rays are incident on an atom, they make the electronic cloud move, as does any electromagnetic wave. The movement of these charges re-radiates waves with the same frequency, blurred slightly due to a variety of effects; this phenomenon is known as Rayleigh scattering. The scattered waves can themselves be scattered but this secondary scattering is assumed to be negligible. In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions. In physical sciences and electrical engineering, dispersion relations describe the effect of dispersion in a medium on the properties of a wave traveling within that medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. From this relation the phase velocity and group velocity of the wave have convenient expressions which then determine the refractive index of the medium. More general than the geometry-dependent and material-dependent dispersion relations, there are the overarching Kramers–Kronig relations that describe the frequency dependence of wave propagation and attenuation.

The Ewald sphere is a geometric construction used in electron, neutron, and X-ray crystallography which demonstrates the relationship between:

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. The theory is now understood as the semi-classical approximation to modern quantum mechanics. In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.

In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

Zero sound is the name given by Lev Landau to the unique quantum vibrations in quantum Fermi liquids.

In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations. In this basis, the spin is quantized along the axis in the direction of motion of the particle. In crystallography, the Laue equations relate the incoming waves to the outgoing waves in the process of diffraction by a crystal lattice. They are named after physicist Max von Laue (1879–1960). They reduce to Bragg's law.

The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In 1922 American physicist William Duane presented the hypothesis that the scattering of X-Ray photons by a crystal could be best explained by a mechanism of discrete quantized transactions between the crystal and the incident X-Ray photons, where the reaction of the crystal is constrained by a simple quantum rule, and the incident photons behave as free particles. Duane argued that the observed discrete scattering is not explainable in a simple manner by theories based on classical waves.