Glimmerite

Last updated
Glimmerite
Igneous rock
Sheet mica, Namibia.jpg
Glimmerite from Namibia.
Composition
Biotite or phlogopite
Glimmerite (biotite - annite w/magnetite), Newark, DE, pegmatite /schist contact zone PXL 20201210 122544957~2.jpg
Glimmerite (biotite - annite w/magnetite), Newark, DE, pegmatite /schist contact zone

Glimmerite is an igneous rock consisting almost entirely of dark mica (biotite or phlogopite). Glimmerite has also been referred to as biotitite, though the use of this term to describe phlogopite-rich rocks has been criticized. [1] Glimmerite may contain minor rutile and ilmenite, and variants of glimmerite bearing graphite, spinel, ankerite, pyrite, apatite, and the carbonate minerals calcite and dolomite have been described. [2] [3] [4]

Glimmerite was first described by Larsen and Pardee (1929). [5]

Related Research Articles

<span class="mw-page-title-main">Mafic</span> Silicate mineral or igneous rock that is rich in magnesium and iron

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

<span class="mw-page-title-main">Kimberlite</span> Igneous rock which sometimes contains diamonds

Kimberlite, an igneous rock and a rare variant of peridotite, is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat diamond called the Star of South Africa in 1869 spawned a diamond rush and led to the excavation of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error.

<span class="mw-page-title-main">Apatite</span> Mineral group, calcium phosphate

Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH, F and Cl ion, respectively, in the crystal. The formula of the admixture of the three most common endmembers is written as Ca10(PO4)6(OH,F,Cl)2, and the crystal unit cell formulae of the individual minerals are written as Ca10(PO4)6(OH)2, Ca10(PO4)6F2 and Ca10(PO4)6Cl2.

<span class="mw-page-title-main">Ilmenite</span> Titanium-iron oxide mineral

Ilmenite is a titanium-iron oxide mineral with the idealized formula FeTiO
3
. It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing inks, fabrics, plastics, paper, sunscreen, food and cosmetics.

<span class="mw-page-title-main">Kerogen</span> Solid organic matter in sedimentary rocks

Kerogen is solid, insoluble organic matter in sedimentary rocks. It consists of a variety of organic materials, including dead plants, algae, and other microorganisms, that have been compressed and heated by geological processes. All the kerogen on earth is estimated to contain 1016 tons of carbon. This makes it the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold.

<span class="mw-page-title-main">Skarn</span> Hard, coarse-grained, hydrothermally altered metamorphic rocks

Skarns or tactites are coarse-grained metamorphic rocks that form by replacement of carbonate-bearing rocks during regional or contact metamorphism and metasomatism. Skarns may form by metamorphic recrystallization of impure carbonate protoliths, bimetasomatic reaction of different lithologies, and infiltration metasomatism by magmatic-hydrothermal fluids. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that commonly intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from a variety of sources; magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Melt inclusion</span>

A melt inclusion is a small parcel or "blobs" of melt(s) that is entrapped by crystals growing in magma and eventually forming igneous rocks. In many respects it is analogous to a fluid inclusion within magmatic hydrothermal systems. Melt inclusions tend to be microscopic in size and can be analyzed for volatile contents that are used to interpret trapping pressures of the melt at depth.

<span class="mw-page-title-main">Qal'eh Hasan Ali</span> Maar-producing volcanic field southeast of Kerman Province, Iran

Qal'eh Hasan Ali is a maar-producing volcanic field located southeast of Kerman Province, Iran. The field is presumed of Quaternary age, though it has produced no historic eruptions. Consisting of 14 maars each of different size, its most significant crater is Great Crater, about 1.2 kilometres (0.75 mi) in width and 200–300 metres (660–980 ft) in depth.

<span class="mw-page-title-main">Wyomingite</span> Type of volcanic rock

Wyomingite is a type of volcanic rock. Specifically, it is a diopside-leucite phlogopite lamproite. It is a potassium enriched, alkaline, basic, phonolite first found in the Leucite Hills of Sweetwater County, Wyoming. Wyomingites are between foidite and tephri-phonolite in composition (in the QAPF classification) and contain leucite (20-25%), augite, phlogopite, apatite, calcite, magnetite and small amounts of olivine (but the latter may be absent). Silica (SiO2) content is between 48.9% and 51.7%. Common groundmass includes potassium-richterite. Wyomingite has also been found at two locations in Australia: West Kimberley, and near Ballina, New South Wales.

A whiteschist is an uncommon metamorphic rock formed at high to ultra-high pressures. It has the characteristic mineral assemblage of kyanite + talc, responsible for its white colour. The name was introduced in 1973 by German mineralogist and petrologist Werner Schreyer. This rock is associated with the metamorphism of some pelites, evaporite sequences or altered basaltic or felsic intrusions. Whiteschists form in the MgO–Fe
2
O
3
Al
2
O
3
SiO
2
H
2
O
(MFASH) system. Rocks of this primary chemistry are extremely uncommon and they are in most cases thought to be the result of metasomatic alteration, with the removal of various mobile elements.

<span class="mw-page-title-main">Provenance (geology)</span>

Provenance in geology, is the reconstruction of the origin of sediments. The Earth is a dynamic planet, and all rocks are subject to transition between the three main rock types: sedimentary, metamorphic, and igneous rocks. Rocks exposed to the surface are eventually broken down into sediments. Sediments are expected to be able to provide evidence of the erosional history of their parent source rocks. The purpose of provenance study is to restore the tectonic, paleo-geographic and paleo-climatic history.

<span class="mw-page-title-main">Serendibite</span> Harar

Serendibite is an extremely rare silicate mineral that was first discovered in 1902 in Sri Lanka by Dunil Palitha Gunasekera and named after Serendib, the old Arabic name for Sri Lanka.

<span class="mw-page-title-main">El Laco</span> Volcanic complex in the Antofagasta Region, Chile

El Laco is a volcanic complex in the Antofagasta Region of Chile. It is directly south of the Cordón de Puntas Negras volcanic chain. Part of the Central Volcanic Zone of the Andes, it is a group of seven stratovolcanoes and a caldera. It is about two million years old. The main summit of the volcano is a lava dome called Pico Laco, which is variously reported to be 5,325 metres (17,470 ft) or 5,472 metres (17,953 ft) high. The edifice has been affected by glaciation, and some reports indicate that it is still fumarolically active.

<span class="mw-page-title-main">Geology of Finland</span> Overview of the geology of Finland

The geology of Finland is made up of a mix of geologically very young and very old materials. Common rock types are orthogneiss, granite, metavolcanics and metasedimentary rocks. On top of these lies a widespread thin layer of unconsolidated deposits formed in connection to the Quaternary ice ages, for example eskers, till and marine clay. The topographic relief is rather subdued because mountain massifs were worn down to a peneplain long ago.

The Alnö Complex or Alnö Alkaline Complex is a group of carbonatite and alkaline igneous rocks in Alnö in the eastern coast of central Sweden that intruded the basement in Late Ediacaran times. The Alnö Complex is made up by a series of concentric dykes within a radius of 25 km of a main "central complex" of intrusions. In addition the Alnö Complex proper is surrounded by a 500 to 600 m broad zone of metasomatic rock that was formed by metasomatic alteration of the existing Precambrian migmatite gneiss basement. The specific type of metasomatic rock is referred by some authors as "fenite". The dykes of the complex consist of carbonatite and alkaline rocks such melilite and sövite.

<span class="mw-page-title-main">Earliest known life forms</span> Putative fossilized microorganisms found near hydrothermal vents

The earliest known life forms on Earth may be as old as 4.1 billion years old according to biologically fractionated graphite inside a single zircon grain in the Jack Hills range of Australia. The earliest evidence of life found in a stratigraphic unit, not just a single mineral grain, is the 3.7 Ga metasedimentary rocks containing graphite from the Isua Supracrustal Belt in Greenland. The earliest direct known life on land may be stromatolites which have been found in 3.480-billion-year-old geyserite uncovered in the Dresser Formation of the Pilbara Craton of Western Australia. Various microfossils of microorganisms have been found in 3.4 Ga rocks, including 3.465-billion-year-old Apex chert rocks from the same Australian craton region, and in 3.42 Ga hydrothermal vent precipitates from Barberton, South Africa. Much later in the geologic record, likely starting in 1.73 Ga, preserved molecular compounds of biologic origin are indicative of aerobic life. Therefore, the earliest time for the origin of life on Earth is at least 3.5 billion years ago, possibly as early as 4.1 billion years ago — not long after the oceans formed 4.5 billion years ago and after the formation of the Earth 4.54 billion years ago.

<span class="mw-page-title-main">Siilinjärvi carbonatite</span>

The Siilinjärvi carbonatite complex is located in central Finland close to the city of Kuopio. It is named after the nearby town of Siilinjärvi, located approximately 5 km west of the southern extension of the complex. Siilinjärvi is the second largest carbonatite complex in Finland after the Sokli formation, and one of the oldest carbonatites on Earth at 2610±4 Ma. The carbonatite complex consists of a roughly 16 km long steeply dipping lenticular body surrounded by granite gneiss. The maximum width of the body is 1.5 km and the surface area is 14.7 km2. The complex was discovered in 1950 by the Geological Survey of Finland with help of local mineral collectors. The exploration drilling began in 1958 by Lohjan Kalkkitehdas Oy. Typpi Oy continued drilling between years 1964 and 1967, and Apatiitti Oy drilled from 1967 to 1968. After the drillings, the laboratory and pilot plant work were made. The mine was opened by Kemira Oyj in 1979 as an open pit. The operation was sold to Yara in 2007.

Arie Poldervaart was a Dutch petrologist and leading expert on igneous and metamorphic rocks. He was a Guggenheim Fellow for the academic year 1959–1960.

<span class="mw-page-title-main">Navajo volcanic field</span> Volcanic field in southwestern United States

The Navajo volcanic field is a monogenetic volcanic field located in the Four Corners region of the United States, in the central part of the Colorado Plateau. The volcanic field consists of over 80 volcanoes and associated intrusions of unusual potassium-rich compositions, with an age range of 26.2 to 24.7 million years (Ma).

References

  1. Morel, S. W. (1988). "Malawi glimmerites". Journal of African Earth Sciences. 7 (7/8): 987–997. Bibcode:1988JAfES...7..987M. doi:10.1016/0899-5362(88)90012-7.
  2. Gupta, Alok K.; LeMaitre, R. W.; Haukka, M. T.; Yagi, Kenzo (1983). "Geochemical studies on the carbonated apatite glimmerites from Damodar Valley, India". Proceedings of the Japan Academy, Series B. 59 (5): 113–116. doi: 10.2183/pjab.59.113 . Archived from the original on 2018-10-30. Retrieved 2019-03-18.
  3. Al Ani, Thair (2013). "Mineralogy and petrography of Siilinjärvi carbonatite and glimmerite rocks, Eastern Finland" (PDF). Geological Survey of Finland Report. 164. Archived (PDF) from the original on 2018-11-23. Retrieved 2019-03-18.
  4. Rajesh, V. J.; Arai, Shoji; Satish-Kumar, M. (2009). "Origin of graphite in glimmerite and spinellite in Achankovil Shear Zone, southern India". Journal of Mineralogical and Petrological Sciences. 104 (6): 407–412. doi: 10.2465/jmps.090622d . Archived from the original on 2018-10-31. Retrieved 2019-03-18.
  5. Larsen, Esper S.; Pardee, J. T. (1929). "The stock of alkaline rocks near Libby, Montana". The Journal of Geology. 37 (2): 97–112. Bibcode:1929JG.....37...97L. doi:10.1086/623598.