Glimmerite

Last updated
Glimmerite
Igneous rock
Sheet mica, Namibia.jpg
Glimmerite from Namibia.
Composition
Biotite or phlogopite
Glimmerite (biotite - annite w/magnetite), Newark, DE, pegmatite /schist contact zone PXL 20201210 122544957~2.jpg
Glimmerite (biotite - annite w/magnetite), Newark, DE, pegmatite /schist contact zone

Glimmerite is an igneous rock consisting almost entirely of dark mica (biotite or phlogopite). Glimmerite has also been referred to as biotitite, though the use of this term to describe phlogopite-rich rocks has been criticized. [1] Glimmerite may contain minor rutile and ilmenite, and variants of glimmerite bearing graphite, spinel, ankerite, pyrite, apatite, and the carbonate minerals calcite and dolomite have been described. [2] [3] [4]

Glimmerite was first described by Larsen and Pardee (1929). [5]

Related Research Articles

<span class="mw-page-title-main">Biotite</span> Group of phyllosilicate minerals within the mica group

Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula K(Mg,Fe)3AlSi3O10(F,OH)2. It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite and eastonite. Biotite was regarded as a mineral species by the International Mineralogical Association until 1998, when its status was changed to a mineral group. The term biotite is still used to describe unanalysed dark micas in the field. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

<span class="mw-page-title-main">Mafic</span> Silicate mineral or igneous rock that is rich in magnesium and iron

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

<span class="mw-page-title-main">Basalt</span> Magnesium- and iron-rich extrusive igneous rock

Basalt is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt is chemically equivalent to slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.

<span class="mw-page-title-main">Kimberlite</span> Igneous rock which sometimes contains diamonds

Kimberlite is an igneous rock and a rare variant of peridotite. It is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat (16.70 g) diamond called the Star of South Africa in 1869 spawned a diamond rush and the digging of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error.

<span class="mw-page-title-main">Apatite</span> Mineral group, calcium phosphate

Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH, F and Cl ion, respectively, in the crystal. The formula of the admixture of the three most common endmembers is written as Ca10(PO4)6(OH,F,Cl)2, and the crystal unit cell formulae of the individual minerals are written as Ca10(PO4)6(OH)2, Ca10(PO4)6F2 and Ca10(PO4)6Cl2.

<span class="mw-page-title-main">Diorite</span> Igneous rock type

Diorite is an intrusive igneous rock formed by the slow cooling underground of magma that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-silica (mafic) gabbro and high-silica (felsic) granite.

<span class="mw-page-title-main">Skarn</span> Hard, coarse-grained, hydrothermally altered metamorphic rocks

Skarns or tactites are coarse-grained metamorphic rocks that form by replacement of carbonate-bearing rocks during regional or contact metamorphism and metasomatism. Skarns may form by metamorphic recrystallization of impure carbonate protoliths, bimetasomatic reaction of different lithologies, and infiltration metasomatism by magmatic-hydrothermal fluids. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that commonly intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from a variety of sources; magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Thermochronology</span> Study of the thermal evolution of a region of a planet

Thermochronology is the study of the thermal evolution of a region of a planet. Thermochronologists use radiometric dating along with the closure temperatures that represent the temperature of the mineral being studied at the time given by the date recorded to understand the thermal history of a specific rock, mineral, or geologic unit. It is a subfield within geology, and is closely associated with geochronology.

<span class="mw-page-title-main">Wyomingite</span> Type of volcanic rock

Wyomingite is a type of volcanic rock. Specifically, it is a diopside-leucite phlogopite lamproite. It is a potassium enriched, alkaline, basic, phonolite first found in the Leucite Hills of Sweetwater County, Wyoming. Wyomingites are between foidite and tephri-phonolite in composition (in the QAPF classification) and contain leucite (20-25%), augite, phlogopite, apatite, calcite, magnetite and small amounts of olivine (but the latter may be absent). Silica (SiO2) content is between 48.9% and 51.7%. Common groundmass includes potassium-richterite. Wyomingite has also been found at two locations in Australia: West Kimberley, and near Ballina, New South Wales.

<span class="mw-page-title-main">Bernard Elgey Leake</span> English geologist

Bernard Elgey Leake is an English geologist. He is Emeritus Professor of Geology at the University of Glasgow, was Leverhulme Emeritus Fellow at Cardiff University 2000-2002 and has been an Honorary Research Fellow at Cardiff University since 1997.

A whiteschist is an uncommon metamorphic rock formed at high to ultra-high pressures. It has the characteristic mineral assemblage of kyanite + talc, responsible for its white colour. The name was introduced in 1973 by German mineralogist and petrologist Werner Schreyer. This rock is associated with the metamorphism of some pelites, evaporite sequences or altered basaltic or felsic intrusions. Whiteschists form in the MgO–Fe
2
O
3
Al
2
O
3
SiO
2
H
2
O
(MFASH) system. Rocks of this primary chemistry are extremely uncommon and they are in most cases thought to be the result of metasomatic alteration, with the removal of various mobile elements.

Provenance in geology, is the reconstruction of the origin of sediments. The Earth is a dynamic planet, and all rocks are subject to transition between the three main rock types: sedimentary, metamorphic, and igneous rocks. Rocks exposed to the surface are sooner or later broken down into sediments. Sediments are expected to be able to provide evidence of the erosional history of their parent source rocks. The purpose of provenance study is to restore the tectonic, paleo-geographic and paleo-climatic history.

<span class="mw-page-title-main">Serendibite</span> Harar

Serendibite is an extremely rare silicate mineral that was first discovered in 1902 in Sri Lanka by Dunil Palitha Gunasekera and named after Serendib, the old Arabic name for Sri Lanka.

<span class="mw-page-title-main">Geology of Finland</span> Overview of the geology of Finland

The geology of Finland is made up of a mix of geologically very young and very old materials. Common rock types are orthogneiss, granite, metavolcanics and metasedimentary rocks. On top of these lies a widespread thin layer of unconsolidated deposits formed in connection to the Quaternary ice ages, for example eskers, till and marine clay. The topographic relief is rather subdued because mountain massifs were worn down to a peneplain long ago.

The Alnö Complex or Alnö Alkaline Complex is a group of carbonatite and alkaline igneous rocks in Alnö in the eastern coast of central Sweden that intruded the basement in Late Ediacaran times. The Alnö Complex is made up by a series of concentric dykes within a radius of 25 km of a main "central complex" of intrusions. In addition the Alnö Complex proper is surrounded by a 500 to 600 m broad zone of metasomatic rock that was formed by metasomatic alteration of the existing Precambrian migmatite gneiss basement. The specific type of metasomatic rock is referred by some authors as "fenite". The dykes of the complex consist of carbonatite and alkaline rocks such melilite and sövite.

Alok Krishna Gupta is an Indian mineralogist, petrologist and a former Raja Ramanna Fellow of the Department of Atomic Energy at the National Centre of Experimental Mineralogy and Petrology of the University of Allahabad. He is known for his studies on the genesis of alkaline rocks and is an elected fellow of all three major Indian science academies viz. the National Academy of Sciences, India, Indian National Science Academy and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Earth, Atmosphere, Ocean and Planetary Sciences in 1986.

<span class="mw-page-title-main">Scandinavian Caledonides</span> Remains of an orogenic belt formed during the Silurian–Devonian period

The Scandinavian Caledonides are the vestiges of an ancient, today deeply eroded orogenic belt formed during the Silurian–Devonian continental collision of Baltica and Laurentia, which is referred to as the Scandian phase of the Caledonian orogeny. The size of the Scandinavian Caledonides at the time of their formation can be compared with the size of the Himalayas. The area east of the Scandinavian Caledonides, including parts of Finland, developed into a foreland basin where old rocks and surfaces were covered by sediments. Today, the Scandinavian Caledonides underlay most of the western and northern Scandinavian Peninsula, whereas other parts of the Caledonides can be traced into West and Central Europe as well as parts of Greenland and eastern North America.

<span class="mw-page-title-main">Siilinjärvi carbonatite</span>

The Siilinjärvi carbonatite complex is located in central Finland close to the city of Kuopio. It is named after the nearby village of Siilinjärvi, located approximately 5 km west of the southern extension of the complex. Siilinjärvi is the second largest carbonatite complex in Finland after the Sokli formation, and one of the oldest carbonatites on Earth at 2610±4 Ma. The carbonatite complex consists of a roughly 16 km long steeply dipping lenticular body surrounded by granite gneiss. The maximum width of the body is 1.5 km and the surface area is 14.7 km2. The complex was discovered in 1950 by the Geological Survey of Finland with help of local mineral collectors. The exploration drilling began in 1958 by Lohjan Kalkkitehdas Oy. Typpi Oy continued drilling between years 1964 and 1967, and Apatiitti Oy drilled from 1967 to 1968. After the drillings, the laboratory and pilot plant work were made. The mine was opened by Kemira Oyj in 1979 as an open pit. The operation was sold to Yara in 2007.

<span class="mw-page-title-main">Navajo volcanic field</span> Volcanic field in southwestern United States

The Navajo volcanic field is a monogenetic volcanic field located in the Four Corners region of the United States, in the central part of the Colorado Plateau. The volcanic field consists of over 80 volcanoes and associated intrusions of unusual potassium-rich compositions, with an age range of 26.2 to 24.7 million years (Ma).

References

  1. Morel, S. W. (1988). "Malawi glimmerites". Journal of African Earth Sciences. 7 (7/8): 987–997. Bibcode:1988JAfES...7..987M. doi:10.1016/0899-5362(88)90012-7.
  2. Gupta, Alok K.; LeMaitre, R. W.; Haukka, M. T.; Yagi, Kenzo (1983). "Geochemical studies on the carbonated apatite glimmerites from Damodar Valley, India". Proceedings of the Japan Academy, Series B. 59 (5): 113–116. doi: 10.2183/pjab.59.113 .
  3. Al Ani, Thair (2013). "Mineralogy and petrography of Siilinjärvi carbonatite and glimmerite rocks, Eastern Finland" (PDF). Geological Survey of Finland Report. 164.
  4. Rajesh, V. J.; Arai, Shoji; Satish-Kumar, M. (2009). "Origin of graphite in glimmerite and spinellite in Achankovil Shear Zone, southern India". Journal of Mineralogical and Petrological Sciences. 104 (6): 407–412. doi: 10.2465/jmps.090622d .
  5. Larsen, Esper S.; Pardee, J. T. (1929). "The stock of alkaline rocks near Libby, Montana". The Journal of Geology. 37 (2): 97–112. Bibcode:1929JG.....37...97L. doi:10.1086/623598.