Gold cluster

Last updated

Gold clusters, a part of cluster chemistry, is a term used to describe molecular clusters of gold or larger colloidal particles. Both types can described as nanoparticles, with diameters of less than one micrometer. [1] Gold nanoclusters have, despite intense efforts, as yet no commercial applications. Their optoelectronic [2] and catalytic [3] [4] properties continue to attract attention.

Contents

Bare gold clusters

Bare gold clusters, i.e., clusters without stabilizing ligand shells can be synthesized and studied in vacuum using molecular beam techniques. Their structures have been experimentally studied using, e.g., anion photoelectron spectroscopy, [5] far-infrared spectroscopy, [6] as well as measurements of their ion mobility and electron diffraction studies [7] in conjunction with quantum chemical calculations. The structures of such clusters differ strongly from those of the ligand-stabilized ones, indicating an pivotal influence of the chemical environment on the cluster structure. A notable example is Au20 which forms a perfect tetrahedron in which the Au atom packing closely resembles the atomic arrangement in the fcc bulk structure of metallic gold. [5] [6] Evidence has been presented for the existence of hollow golden cages with the partial formula Aun with n = 16 to 18. [8] These clusters, with diameter of 550 picometres, are generated by laser vaporization and characterized by photoelectron spectroscopy.

Structure of ligand-stabilized Au clusters

Construction of the Au13 icosahedron. Au Build Cluster.png
Construction of the Au13 icosahedron.

Bulk gold exhibits a face-centered cubic (fcc) structure. As gold particle size decreases the fcc structure of gold often changes into nanoparticles with five-fold or icosahedral structures, [9] particularly in clusters of a few atoms illustrated by Au13. [1] It can be shown that the fcc structure can be extended by a half unit cell in order to make it look like a cuboctahedral structure. The cuboctahedral structure maintains the cubic-closed pack and symmetry of fcc. This can be thought of as redefining the unit cell into a more complicated cell. Each edge of the cuboctahedron represents a peripheral Au–Au bond. The cuboctahedron has 24 edges while the icosahedron has 30 edges; the transition from cuboctahedron to icosahedron is favored since the increase in bonds contributes to the overall stability of the icosahedron structure. [1]

The centered icosahedral cluster Au13 is the basis of constructing large gold nanoclusters. Au13 is the endpoint of atom-by-atom growth. In other words, starting with one gold atom up to Au12, each successful cluster is created by adding one additional atom. The icosahedral motif is found in many gold clusters through vertex sharing (Au25 and Au36), face-fusion (Au23 and Au29), and interpenetrating bi-icosahedrons (Au19, Au23, Au26, and Au29). [1] Larger gold nanoclusters can often be reduced to a series of icosahedrons connecting, overlapping, and/or surrounding each other. The crystallization process of gold nanoclusters with 561 atoms from the liquid involves the formation of surface segments that grow towards the center of the cluster. [10] The cluster assumes an icosahedral structure because of the associated surface energy reduction. [11] [12] Icosahedral structures and also five-fold twins are also common in nanoparticles produced by other methods. [13] [9]

Discrete gold clusters

Well-defined, molecular clusters are known, invariably containing organic ligands on their exteriors. Two examples are [Au6C(P(C6H5)3)6]2+ and [Au9(P(C6H5)3)8]3+. [14] In order to generate naked gold clusters for catalytic applications, the ligands must be removed, which is typically done via a high-temperature (200 °C/392 °F or higher) calcination process, [15] but can also be achieved chemically at low temperatures (below 100 °C/212 °F), e.g. using a peroxide-assisted route. [16]

Colloidal clusters

Gold clusters can be obtained in colloid form. Such colloids often occur with a surface coating of alkanethiols or proteins. Such clusters can be used in immunohistochemical staining. [17] Gold metal nanoparticles (NPs) are characterized by an intense absorption in the visible region, which enhances the utility of these species for the development of completely optical devices. The wavelength of this surface plasmon resonance (SPR) band depends on the size and shape of the nanoparticles as well as their interactions with the surrounding medium. The presence of this band enhances the potential utility of gold nanoparticle as building blocks for devices for data storage, ultrafast switching, and gas sensors. Whilst plasmonic gold nanoparticles only exhibit electric moments, clusters of such particles can exhibit magnetic moments making them of great interest for use in optical metamaterials [18]

Catalysis

When supported on a FeOOH surface, gold clusters catalyze oxidation of CO at ambient temperatures. [19] Similarly gold clusters supported on TiO2 can oxidize CO at temperatures as low as 40K. [20] Catalytic activity may correlate with the size and structure of gold nanoclusters, both the energetics and electronic properties with size and structure. [21] [22]

See also

Related Research Articles

<span class="mw-page-title-main">Colloidal gold</span> Suspension of gold nanoparticles in a liquid

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

In chemistry, a superatom is any cluster of atoms that seem to exhibit some of the properties of elemental atoms. One example of a superatom is the cluster Al
13

.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

Melting-point depression is the phenomenon of reduction of the melting point of a material with a reduction of its size. This phenomenon is very prominent in nanoscale materials, which melt at temperatures hundreds of degrees lower than bulk materials.

Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

<span class="mw-page-title-main">Platinum nanoparticle</span>

Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span> Novel catalyst using carbon nanotubes as the support instead of the conventional alumina

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span> Physical phenomenon

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

<span class="mw-page-title-main">Thiolate-protected gold cluster</span>

Thiolate-protected gold clusters are a type of ligand-protected metal cluster, synthesized from gold ions and thin layer compounds that play a special role in cluster physics because of their unique stability and electronic properties. They are considered to be stable compounds.

<span class="mw-page-title-main">Icosahedral twins</span> Structure found in atomic clusters and nanoparticles

An icosahedral twin is a atomic structure found in atomic clusters and also nanoparticles with some thousands of atoms. Their atomic structure is slightly different from what is found for bulk materials, and contains five-fold symmetries. They have been analyzed in many areas of science including crystal growth, crystallography, chemical physics, surface science and materials science, as well as sometimes being considered as beautiful due to their high symmetry.

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.

<span class="mw-page-title-main">Heterogeneous gold catalysis</span>

Heterogeneous gold catalysis refers to the use of elemental gold as a heterogeneous catalyst. As in most heterogeneous catalysis, the metal is typically supported on metal oxide. Furthermore, as seen in other heterogeneous catalysts, activity increases with a decreasing diameter of supported gold clusters. Several industrially relevant processes are also observed such as H2 activation, Water-gas shift reaction, and hydrogenation. One or two gold-catalyzed reactions may have been commercialized.

<span class="mw-page-title-main">Günther Rupprechter</span> Austrian scientist

Professor Günther Rupprechter is an Austrian scientist, full professor and currently Head of the Institute of Materials Chemistry, Technische Universität Wien. He has worked in physical chemistry, surface science, nanoscience and nanotechnology, particularly in the area of catalytic surface reactions on heterogeneous catalysts, identifying fundamental reaction steps at the atomic level by in situ and operando spectroscopy and microscopy.

<span class="mw-page-title-main">Fiveling</span> Five crystals arranged round a common axis

A fiveling, also known as a decahedral nanoparticle, a multiply-twinned particle (MTP), a pentagonal nanoparticle, a pentatwin, or a five-fold twin is a type of twinned crystal that can exist at sizes ranging from nanometers to millimetres. It contains five different single crystals arranged around a common axis. In most cases each unit has a face centered cubic (fcc) arrangement of the atoms, although they are also known for other types of crystal structure.

<span class="mw-page-title-main">Extended Wulff constructions</span> Shapes for crystals with interfaces and twins

Extended Wulff constructions refers to a number of different ways to model the structure of nanoparticles as well as larger mineral crystals, and as such can be used to understand both the shape of certain gemstones or crystals with twins.as well as in other areas such as how nanoparticles play a role in the commercial production of chemicals using heterogeneous catalysts. They are variants of the Wulff construction which is used for a solid single crystal in isolation. They include cases for solid particle on substrates, those with twins and also when growth is important.

References

  1. 1 2 3 4 Jin, Rongchao; Zhu, Yan; Qian, Huifeng (June 2011). "Quantum-Sized Gold Nanoclusters: Bridging the Gap between Organometallics and Nanocrystals". Chemistry: A European Journal. 17 (24): 6584–6593. doi:10.1002/chem.201002390. PMID   21590819.
  2. Ghosh, Sujit Kumar; Pal, Tarasankar (2007). "Intercoupling Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications". Chemical Reviews. 107 (11): 4797–4862. doi:10.1021/cr0680282. PMID   17999554.
  3. Corti, Christopher W.; Holliday, Richard J.; Thompson, David T. (2005). "Commercial aspects of gold catalysis". Applied Catalysis A: General. 291 (1–2): 253–261. doi:10.1016/j.apcata.2005.01.051.
  4. Johnston, Peter; Carthey, Nicholas; Hutchings, Graham J. (2015-11-25). "Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination". Journal of the American Chemical Society. 137 (46): 14548–14557. doi:10.1021/jacs.5b07752. ISSN   0002-7863.
  5. 1 2 Li, Jun; Li, Xi; Zhai, Hua-Jin; Wang, Lai-Sheng (2003-02-07). "Au 20 : A Tetrahedral Cluster". Science. 299 (5608): 864–867. doi:10.1126/science.1079879. ISSN   0036-8075. PMID   12574622.
  6. 1 2 Gruene, Philipp; Rayner, David M.; Redlich, Britta; van der Meer, Alexander F. G.; Lyon, Jonathan T.; Meijer, Gerard; Fielicke, André (August 2008). "Structures of Neutral Au 7 , Au 19 , and Au 20 Clusters in the Gas Phase". Science. 321 (5889): 674–676. doi:10.1126/science.1161166. hdl: 11858/00-001M-0000-0010-FC2A-A . ISSN   0036-8075. PMID   18669858.
  7. Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M. (2010-03-28). "Determining the size-dependent structure of ligand-free gold-cluster ions". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368 (1915): 1211–1243. Bibcode:2010RSPTA.368.1211S. doi:10.1098/rsta.2009.0269. ISSN   1364-503X. PMID   20156823.
  8. Bulusu, Satya; Li, Xi; Wang, Lai-Sheng; Zeng, Xiao Cheng (May 2006). "Evidence of Hollow Golden Cages". Proceedings of the National Academy of Sciences of the United States of America. 103 (22): 8326–8330. Bibcode:2006PNAS..103.8326B. doi: 10.1073/pnas.0600637103 . PMC   1482493 . PMID   16714382.
  9. 1 2 Marks, L D; Peng, L (2016). "Nanoparticle shape, thermodynamics and kinetics". Journal of Physics: Condensed Matter. 28 (5): 053001. Bibcode:2016JPCM...28e3001M. doi:10.1088/0953-8984/28/5/053001. ISSN   0953-8984. PMID   26792459.
  10. Nam, H.-S.; Hwang, Nong M.; Yu, B. D.; Yoon, J.-K. (December 2002). "Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism". Physical Review Letters. 89 (27). 275502. arXiv: physics/0205024 . Bibcode:2002PhRvL..89A5502N. doi:10.1103/PhysRevLett.89.275502. PMID   12513216. S2CID   24541646.
  11. Ino, Shozo (1969-10-15). "Stability of Multiply-Twinned Particles". Journal of the Physical Society of Japan. 27 (4): 941–953. doi:10.1143/JPSJ.27.941. ISSN   0031-9015.
  12. Howie, A.; Marks, L. D. (1984). "Elastic strains and the energy balance for multiply twinned particles". Philosophical Magazine A. 49 (1): 95–109. doi:10.1080/01418618408233432. ISSN   0141-8610.
  13. Hofmeister, H. (1998). "Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films". Crystal Research and Technology. 33 (1): 3–25. doi:10.1002/(SICI)1521-4079(1998)33:1<3::AID-CRAT3>3.0.CO;2-3. ISSN   1521-4079.
  14. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN   978-0-12-352651-9.
  15. Yuan, Youzhu; Asakura, Kiyotaka; et al. (1998). "Supported gold catalysis derived from the interaction of a Au–phosphine complex with as-precipitated titanium hydroxide and titanium oxide". Catalysis Today. 44 (1–4): 333–342. doi:10.1016/S0920-5861(98)00207-7.
  16. Kilmartin, John; Sarip, Rozie; et al. (2012). "Following the Creation of Active Gold Nanocatalysts from Phosphine-Stabilized Molecular Clusters". ACS Catalysis. 2 (6): 957–963. doi:10.1021/cs2006263.
  17. Hainfeld, J. F.; Powell, R. D. (April 2000). "New Frontiers in Gold Labeling". Journal of Histochemistry & Cytochemistry. 48 (4): 471–480. doi: 10.1177/002215540004800404 . PMID   10727288.
  18. Roach, Lucien; Lermusiaux, Laurent; Baron, Alexandre; Tréguer-Delapierre, Mona (2021). "Symmetric plasmonic nanoparticle clusters: Synthesis and novel optical properties". Encyclopedia of Nanomaterials. Elsevier. doi:10.1016/B978-0-12-822425-0.00011-7. ISBN   9780128035818. S2CID   244804672.
  19. Herzing, Andrew A.; Kiely, Christopher J.; Carley, Albert F.; Landon, Phillip; Hutchings, Graham J. (September 2008). "Identification of Gold Nanoclusters on Iron Oxide Supports for CO Oxidation". Science . 321 (5894): 1331–1335. Bibcode:2008Sci...321.1331H. doi:10.1126/science.1159639. PMID   18772433. S2CID   206513695.
  20. Valden, M.; Lai, X.; Goodman, D. W. (September 1998). "Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties". Science . 281 (5383): 1647–1650. Bibcode:1998Sci...281.1647V. doi:10.1126/science.281.5383.1647. PMID   9733505.
  21. Häkkinen, Hannu; Landman, Uzi (July 2000). "Gold Clusters (AuN, 2 <~ N <~ 10) and Their Anions". Physical Review B. 62 (4): R2287–R2290. Bibcode:2000PhRvB..62.2287H. doi:10.1103/PhysRevB.62.R2287.
  22. Li, Xi-Bo; Wang, Hong-Yan; Yang, Xiang-Dong; Zhu, Zheng-He; Tang, Yong-Jian (2007). "Size Dependence of the Structures and Energetic and Electronic Properties of Gold Clusters". Journal of Chemical Physics. 126 (8). 084505. Bibcode:2007JChPh.126h4505L. doi:10.1063/1.2434779. PMID   17343456.

Further reading