Gorman polar form is a functional form for indirect utility functions in economics.
Standard consumer theory is developed for a single consumer. The consumer has a utility function, from which his demand curves can be calculated. Then, it is possible to predict the behavior of the consumer in certain conditions, price or income changes. But in reality, there are many different consumers, each with his own utility function and demand curve. How can we use consumer theory to predict the behavior of an entire society? One option is to represent an entire society as a single "mega consumer", which has an aggregate utility function and aggregate demand curve. But in what cases is it indeed possible to represent an entire society as a single consumer?
Formally: [1] consider an economy with consumers, each of whom has a demand function that depends on his income and the price system:
The aggregate demand of society is, in general, a function of the price system and the entire distribution of incomes:
To represent the entire society as a single consumer, the aggregate demand must be a function of only the prices and the total income, regardless of its distribution:
Under what conditions is it possible to represent the aggregate demand in this way?
Early results by Antonelli (1886) and Nataf (1953) had shown that, assuming all individuals face the same prices in a market, their income consumption curves and their Engel curves (expenditure as a function of income) should be parallel straight lines. This means that we can calculate an income-consumption curve of an entire society just by summing the curves of the consumers. In other words, suppose the entire society is given a certain income. This income is somehow distributed between the members of society, then each member selects his consumption according to his income-consumption curve. If the curves are all parallel straight lines, the aggregate demand of society will be independent of the distribution of income among the agents.
Gorman's first published paper in 1953 developed these ideas in order to answer the question of representing a society by a single individual. In 1961, Gorman published a short, four-page paper in Metroeconomica which derived an explicit expression for the functional form of preferences which give rise to linear Engel curves. The expenditure function of each consumer (the amount of money required to reach a certain utility level in a certain price system) must be linear in utility:
where both and are homogeneous of degree one in prices (, a vector). This homogeneity condition ensures that gives linear Engel curves.
and have nice interpretations: is the expenditure needed to reach a reference utility level of zero for each individual (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): i), while is the price index which deflates the excess money income needed to attain a level of utility . It is important to note that is the same for every individual in a society, so the Engel curves for all consumers are parallel.
Inverting this formula gives the indirect utility function (utility as a function of price and income):
where is the amount of income available to the individual and is equivalent to the expenditure () in the previous equation. This is what Gorman called “the polar form of the underlying utility function.” Gorman's use of the term polar was in reference to the idea that the indirect utility function can be seen as using polar rather than Cartesian (as in direct utility functions) coordinates to describe the indifference curve. Here, income () is analogous to the radius and prices () to an angle.
Two types of preferences that have the Gorman polar form are: [2] : 154
When the utility function of agent has the form:
the indirect utility function has (assuming an interior solution) the form:
which is a special case of the Gorman form.
Indeed, the Marshallian demand function for the nonlinear good of consumers with quasilinear utilities does not depend on the income at all (in this quasilinear case, the demand for the linear good is linear in income):
Hence, the aggregate demand function for the nonlinear good also does not depend on income:
The entire society can be represented by a single representative agent with quasilinear utility function:
where the function satisfies the equality:
In the special case in which all agents have the same utility function , the aggregate utility function is:
The indirect utility function has the form:
which is also a special case of the Gorman form.
Particularly: linear, Leontief and Cobb-Douglas utilities are homothetic and thus have the Gorman form.
To prove that the Engel curves of a function in Gorman polar form are linear, apply Roy's identity to the indirect utility function to get a Marshallian demand function for an individual () and a good ():
This is linear in income (), so the change in an individual's demand for some commodity with respect to a change in that individual's income, , does not depend on income, and thus Engel curves are linear.
Also, since this change does not depend on variables particular to any individual, the slopes of the Engel curves of different individuals are equal.
Many applications of Gorman polar form are summarized in various texts and in Honohan and Neary's article. [3] These applications include the ease of estimation of and in certain cases. But the most important application is for the theorist of economics, in that it allows a researcher to treat a society of utility-maximizing individuals as a single individual. In other words, under these conditions a community indifference mapping is guaranteed to exist.
As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosophers such as Jeremy Bentham and John Stuart Mill. The term has been adapted and reapplied within neoclassical economics, which dominates modern economic theory, as a utility function that represents a consumer's ordinal preferences over a choice set, but is not necessarily comparable across consumers or possessing a cardinal interpretation. This concept of utility is personal and based on choice rather than on pleasure received, and so requires fewer behavioral assumptions than the original concept.
In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.
In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.
In macroeconomics, aggregate demand (AD) or domestic final demand (DFD) is the total demand for final goods and services in an economy at a given time. It is often called effective demand, though at other times this term is distinguished. This is the demand for the gross domestic product of a country. It specifies the amount of goods and services that will be purchased at all possible price levels. Consumer spending, investment, corporate and government expenditure, and net exports make up the aggregate demand.
In microeconomics, two goods are substitutes if the products could be used for the same purpose by the consumers. That is, a consumer perceives both goods as similar or comparable, so that having more of one good causes the consumer to desire less of the other good. Contrary to complementary goods and independent goods, substitute goods may replace each other in use due to changing economic conditions. An example of substitute goods is Coca-Cola and Pepsi; the interchangeable aspect of these goods is due to the similarity of the purpose they serve, i.e fulfilling customers' desire for a soft drink. These types of substitutes can be referred to as close substitutes.
In economics, the marginal rate of substitution (MRS) is the rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility. At equilibrium consumption levels, marginal rates of substitution are identical. The marginal rate of substitution is one of the three factors from marginal productivity, the others being marginal rates of transformation and marginal productivity of a factor.
In economics, a complementary good is a good whose appeal increases with the popularity of its complement. Technically, it displays a negative cross elasticity of demand and that demand for it increases when the price of another good decreases. If is a complement to , an increase in the price of will result in a negative movement along the demand curve of and cause the demand curve for to shift inward; less of each good will be demanded. Conversely, a decrease in the price of will result in a positive movement along the demand curve of and cause the demand curve of to shift outward; more of each good will be demanded. This is in contrast to a substitute good, whose demand decreases when its substitute's price decreases.
In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter.
In microeconomics, a consumer's Marshallian demand function is the quantity they demand of a particular good as a function of its price, their income, and the prices of other goods, a more technical exposition of the standard demand function. It is a solution to the utility maximization problem of how the consumer can maximize their utility for given income and prices. A synonymous term is uncompensated demand function, because when the price rises the consumer is not compensated with higher nominal income for the fall in their real income, unlike in the Hicksian demand function. Thus the change in quantity demanded is a combination of a substitution effect and a wealth effect. Although Marshallian demand is in the context of partial equilibrium theory, it is sometimes called Walrasian demand as used in general equilibrium theory.
In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function.
Mode choice analysis is the third step in the conventional four-step transportation forecasting model of transportation planning, following trip distribution and preceding route assignment. From origin-destination table inputs provided by trip distribution, mode choice analysis allows the modeler to determine probabilities that travelers will use a certain mode of transport. These probabilities are called the modal share, and can be used to produce an estimate of the amount of trips taken using each feasible mode.
The iron law of prohibition is a term coined by Richard Cowan in 1986 which posits that as law enforcement becomes more intense, the potency of prohibited substances increases. Cowan put it this way: "the harder the enforcement, the harder the drugs."
The Slutsky equation in economics, named after Eugen Slutsky, relates changes in Marshallian (uncompensated) demand to changes in Hicksian (compensated) demand, which is known as such since it compensates to maintain a fixed level of utility.
A shadow price is the monetary value assigned to an abstract or intangible commodity which is not traded in the marketplace. This often takes the form of an externality. Shadow prices are also known as the recalculation of known market prices in order to account for the presence of distortionary market instruments. Shadow prices are the real economic prices given to goods and services after they have been appropriately adjusted by removing distortionary market instruments and incorporating the societal impact of the respective good or service. A shadow price is often calculated based on a group of assumptions and estimates because it lacks reliable data, so it is subjective and somewhat inaccurate.
In economics, a consumer's indirect utility function gives the consumer's maximal attainable utility when faced with a vector of goods prices and an amount of income . It reflects both the consumer's preferences and market conditions.
Roy's identity is a major result in microeconomics having applications in consumer choice and the theory of the firm. The lemma relates the ordinary (Marshallian) demand function to the derivatives of the indirect utility function. Specifically, denoting the indirect utility function as the Marshallian demand function for good can be calculated as
Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions. Several economists have featured in the topic and have contributed in the final finding of the constant. They include Tom McKenzie, John Hicks and Joan Robinson. The vital economic element of the measure is that it provided the producer a clear picture of how to move between different modes or types of production.
In economics and consumer theory, quasilinear utility functions are linear in one argument, generally the numeraire. Quasilinear preferences can be represented by the utility function where is strictly concave. A useful property of the quasilinear utility function is that the Marshallian/Walrasian demand for does not depend on wealth and is thus not subject to a wealth effect; The absence of a wealth effect simplifies analysis and makes quasilinear utility functions a common choice for modelling. Furthermore, when utility is quasilinear, compensating variation (CV), equivalent variation (EV), and consumer surplus are algebraically equivalent. In mechanism design, quasilinear utility ensures that agents can compensate each other with side payments.
In consumer theory, a consumer's preferences are called homothetic if they can be represented by a utility function which is homogeneous of degree 1. For example, in an economy with two goods , homothetic preferences can be represented by a utility function that has the following property: for every :
The Almost Ideal Demand System (AIDS) is a consumer demand model used primarily by economists to study consumer behavior. The AIDS model gives an arbitrary second-order approximation to any demand system and has many desirable qualities of demand systems. For instance it satisfies the axioms of order, aggregates over consumers without invoking parallel linear Engel curves, is consistent with budget constraints, and is simple to estimate.
{{cite book}}
: CS1 maint: location missing publisher (link) English translation in Chipman, J. S.; Hurwicz, L.; Richter, M. K.; et al., eds. (1971). Preferences, Utility and Demand: A Minnesota Symposium. New York: Harcourt Brace Jovanovich. pp. 333–360.