This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: word use, grammar.(December 2020) |
Grain storage on a subsistence farm is primarily based on minimizing grain loss. In modern agricultural practices there are methods of managing under 1% grain loss, but small subsistence farms can see 20% - 100% of grain loss. This causes starvation and an unstable food supply. Grain loss can be caused by mold growth, bugs, birds, or any other contamination.
One method of preventing loss is hermetic grain storage. Hermetic grain storage strives to eliminate all exchange of gases within the storage system. This mitigates bacterial activity and prevents rodents and bugs from being able to breathe inside the storage systems. The introduction of hermetic grain storage to subsistence farms can create a more stable food supply in the area and reduce the risk of starvation.
Source: [1]
Hermetic storage is the process of storing grain or seeds inside sealed compartments to avoid gas changes with the environment in order to deplete the oxygen and accumulation of carbon dioxide gas. This combination is lethal to insects and molds, creating an alternative control instead of using any other substance nocive to these pests and maintaining the product quality. This storage method is an important aspect for enhancing and elongating grain life at the same time maintaining the grain integrity.
Hermetic storage has been around for a long times and it has been received well and largely in developing countries since the inception of the method. The method can exercised using different materials such as sealed clay pots, sealed plastic bags, sealed metals etc. These materials are effective in their own right and cost are variable therefore caution need to be practiced to preclude insects infestation during storage time. The process is of utmost importance. Ideally a successful hermetic storage would mean grains are able to retain all their nutrient quality and crushable commodities are well kept for the entire process of storage. Hypothetically, if ninety five percent (95%) of the grain retains their natural characteristic and quality, therefore, statistically hermetic grain storage would mean its efficient and effective method.
Nonetheless, the method is used worldwide in Africa, Asia and majority parts of America. The scale of acceptance of this method assure its quality in preserving small and large scale farmer's crops. Developing countries are relentless and do not want to be left behind, there are enthusiastically adopting the method in large scales as they have seen the benefits of using this storage process.
Benefits of using the hermetic storage method include (i) enhances grain life in a much safer and it is rodent-free, weevils-free, pesticides-free and prevents infestation of insects, (ii) the storage process is defiant and resistant to harsh conditions (with the exception of extremely harsh conditions i.e. temperature 0 to -20 degrees Celsius, being unfavorable for oil palm seeds storage) [2] such as hot and humid climates, (iii) the mortality of living organisms is kept at 100 percent rate, (iv) precludes mold from developing and (v) mycotoxins which have a high likelihood to cause cancer are totally annihilated. [3] Prior to hermetic storage, grain need to be properly dried to moisture content range of approximately 12 – 14 percent to avoid germination and viability losses. Germination and viability are crucial for crop productions and if losses are encountered then it would mean a loss in profits.
Source: [4]
Underground grain storage was one of the main methods to preserve cereal early in the nineteenth century through some southeast European and Asiatic societies using “airtight” underground silos as an alternative for big bottle and jars that was used in the Mediterranean. Writing evidence appeared only in the 16th century. By the 1800s, detailed descriptions of the underground silos were made by knowledgeable agricultural writers of Western Europe. They highlighted the airtightness as a major factor to maintain grain quality although some reports observed that some seeds lost germination power.
Early researches with airtight storage were made from 1819 to 1830, where a French industrialist named Ternaux at Saint-Ouen stored grain in 9 series of experiment in large scale in general. Ternaux's stored the product under not so favorable circumstances. The silos were dug into a wet alluvium and the material was stored without caring about the humidity. After several years, only spots of mold was encountered inside the silos, especially in critical areas as the walls, roof, and bottom of the structure. Bread was made with the remaining unspoiled grain but the taste of it was not satisfying; thus, the experiment was considered a failure. However, this can be considered as one of the first made scientific research involving hermetic storage.
The method is heavily used in central, southern parts of Africa (i.e. Botswana) and South America. Small scale farmers have found the process to be more beneficial in their regions. Botswana is an arid area, it can go for longer periods of time without rain and therefore hermetic storage has helped in times without rain i.e. draught. Seeds are well stored for the next season of plowing even though at times seeds are purchase. Usually seeds purchase is done in supplementary measures. In Botswana, traditional people usually use the hermetic storage placed inside a jute bag to increase efficiency and effectiveness in eradicating living organisms within few days. Also, hermetic is crucial in Africa as most of the seeds are produced and stored in the farm. Experimental results proved that hermetic storage of seeds for twelve months can retain germination and viability characteristics, whilst extremely harsh conditions can render an opposite effect.
Brazilian grain producers are starting to use hermetic bags on site to store grains as an alternative to bins. They claim that the cost is accessible and the quality of the grain remains the same for a period of 18 months. The bags are made of polyethylene that are capable of reflect sunlight and avoid the heating of the product as well as degradation by light. [5] Argentina has to, frequently, deal with a storage shortage of 20 to 35 million tonnes of grain. This led to quality and quantity loss since the grain has to be transported directly from the farms to elevators, and from elevators to terminal ports. Hermetically sealed plastic bags (silo bags) has gained popularity among producers to overcome this issue. In 2008 harvest season, more than 33 million tonnes of grain were stored using the silo bags in the country for several grains and oilseeds, and, now, this technology is being adopted by other South American countries. [6] Sealed bag has been used to store mostly silage in North America, however, the use of this storage system started to grown since the early 2000s. Still, instead using hermetic choices, the most common option when dealing with storage shortage is piling the grain on the ground. [7]
In the advancement of these hermetic storage benefits, three methods are popular used to safely store grain and seeds under hermetic conditions: [8]
The main factor that affects the mortality of insects is the low O2 and high CO2 concentrations. Studies show that the synergetic effect between oxygen depletion and dioxide carbon gas accumulation is necessary to effectively control insects in a hermetic storage [3]. Also, moisture content plays an important role, the lower the water present in the grain mass, the higher the mortality, due to the desiccation effect on insects by low O2 and high CO2,. [9] [10] All methods described previously are equally applicable because all ensure that oxygen which would otherwise by insects is totally depleted to avoid infestation on stored grain. The most prominent method is the organic hermetic storage.
Postcosecha silos are galvanized steel silos. Bulk products such as maize, beans, sorghum, rice, wheat, barley, as well as seeds can be stored in silos. Products must be dried to or below 14% moisture content before being placed in silos to prevent fungi growth. These silos are usually built locally with simple tools, making them easy to assemble, and are sold from local craftsman to the locals called artisans. The silo's have a small outlet port at the base of the silo so small amounts of grain can be taken out at a time.
A team at Purdue University has developed the Purdue Improved Cowpea Storage and is promoting its use in Western Africa with funds from the Gates Foundation. This method achieves hermetic grain storage by three bags. This method is generally used for storage and transport of cowpeas, hence the name, but the method can be used on other grains. The heavy polyethylene bags with 80-µm thickness come in 50 - kg or 100 - kg. The first polyethylene bag is filled completely and then tied securely. The first bag is then placed into a second polyethylene bag with same thickness and that bag is tied securely as well. Finally, these two bags are placed in a third woven nylon or polypropylene bag used for its strength. In this third bag farmers and markets can handle the bags without bursting the inner two, and are readily accepted by grain handlers.
In parts of sub-Saharan Africa markets sell used plastic containers that can be used for hermetic storage. One needs to make sure the containers can hermetically seal or the containers will only provide a minimal protection to the grain inside.[ citation needed ]
Container Type | Maize Capacity (kg) | Cost (US$) | useful life (years) | Storage Cost (US$/Mg/year) |
---|---|---|---|---|
Postcosecha silos | 1360 | 145 | 25 to 40 | 4.26 to 2.67 |
PICS | 100 | 3 | 3 | 10.00 |
GrainPro bags | 70 | 3.6 | 5 | 10.00 |
Recycled Containers | 7.74 | 1 | 3 | 43.06 |
Seeds stored hermetically have shown to exhibit prolonged quality. Researches in Ghana investigated the effectiveness of storing seeds using three different types of grain storage. [11] The three methods used in the research included the jute, polypropylene and triple layer hermetic storage. Two destructive insects pests, Adult Prostephanus truncatus and Sitophilus were infested in each bag. These two insects pests are common in Africa and are very destructive to maize. Unprotected maize in storage can be totally annihilated by these organisms. Of these three methods, the triple layer hermetic storage offered outstanding results of seed quality with prolonged germination rate and viability despite insect infestation. Additionally, to ensure that grain maintains its natural quality in storage, it has to be stored at optimal moisture contents of approximately 12 -14% and preferably low moisture content. The bags have to be sealed for the entire period of storage and regular check ups need to be down to ascertain that the seal remains intact i.e. very air tight bags. Another study investigated the efficacy of controlling bean pests i.e. Acanthoscelides obtectus on the quality of beans by employing the hermetic storage system (silo bags and plastic bottles) and non-hermetic glass containers. [12] Beans were stored at high moisture contents of 15%, temperature 25 C and relative humidity 70± 5%. In the study the hermetic method showed no alteration in quality. Deterioration in grain quality arises from several factors (1) high moisture content at the time of storage. High grain moisture content promotes development of molds which renders the grains unusable or unsafe for consumption. (2) failure to keep storage bags air tight from oxygen which would otherwise accelerate insect infestation leading to total destruction of grain. In this phenomenon, hermetic conditions are not met to secure the grain from insects. (3) Failure to keep the bags water tight to prevent moisture infiltration, (4) high temperatures leading to grain discoloration and largely insect infestation. [13]
Longer the exposure of insects to the low O2 and high CO2 concentration atmosphere, higher the mortality of these pests in the hermetic storage. However, temperature and life stage, also, have influence on this factor to determine how long the grain should be stored. The next table show the time required to kill 90% of insects stored in a low pressure hermetic storage depending on the insect species, life stage, and temperature. The table below shows the exposure time (h) required to obtain 90% mortality of three development stages of three species of store-product insects under low pressure ate four temperatures. [14]
Insect species | Life Stage | 25 °C | 33 °C | 37 °C | 40 °C |
---|---|---|---|---|---|
"T. castaneum" | Egg | 19.76 | 10.65 | 7.17 | 3.13 |
"T. castaneum" | Larvae | 2.54 | 2.51 | 1.91 | 1.37 |
"T. castaneum" | Pupae | 10.18 | 8.72 | 6.79 | 2.76 |
"P. Interpunctella" | Egg | 20.86 | 4.45 | 3.09 | 2.00 |
"P. Interpunctella" | Larvae | 3.12 | 2.02 | 1.61 | 1.67 |
"P. Interpunctella" | Pupae | 3.95 | 1.48 | 1.81 | 1.91 |
"R. dominica" | Egg | 134.68 | 63.00 | 33.75 | 8.61 |
"R. dominica" | Larvae | 63.66 | 35.31 | 14.17 | 4.78 |
"R. dominica" | Pupae | 73.09 | 40.54 | 15.68 | 6.49 |
Silage is a type of fodder made from green foliage crops which have been preserved by fermentation to the point of acidification. It can be fed to cattle, sheep, and other such ruminants. The fermentation and storage process is called ensilage, ensiling, or silaging. Silage is usually made from grass crops, including maize, sorghum, or other cereals, using the entire green plant.
Food storage is a way of decreasing the variability of the food supply in the face of natural, inevitable variability. It allows food to be eaten for some time after harvest rather than solely immediately. It is both a traditional domestic skill and, in the form of food logistics, an important industrial and commercial activity. Food preservation, storage, and transport, including timely delivery to consumers, are important to food security, especially for the majority of people throughout the world who rely on others to produce their food.
A controlled atmosphere is an agricultural storage method in which the concentrations of oxygen, carbon dioxide and nitrogen, as well as the temperature and humidity of a storage room are regulated. Both dry commodities and fresh fruit and vegetables can be stored in controlled atmospheres.
The drugstore beetle, also known as the bread beetle, biscuit beetle, and misnamed as the biscuit weevil, is a tiny, brown beetle that can be found infesting a wide variety of dried plant products, where it is among the most common non-weevils to be found. It is the only living member of the genus Stegobium. It belongs to the family Ptinidae, which also includes the deathwatch beetle and furniture beetle.
Modified atmosphere packaging (MAP) is the practice of modifying the composition of the internal atmosphere of a package in order to improve the shelf life. The need for this technology for food arises from the short shelf life of food products such as meat, fish, poultry, and dairy in the presence of oxygen. In food, oxygen is readily available for lipid oxidation reactions. Oxygen also helps maintain high respiration rates of fresh produce, which contribute to shortened shelf life. From a microbiological aspect, oxygen encourages the growth of aerobic spoilage microorganisms. Therefore, the reduction of oxygen and its replacement with other gases can reduce or delay oxidation reactions and microbiological spoilage. Oxygen scavengers may also be used to reduce browning due to lipid oxidation by halting the auto-oxidative chemical process. Besides, MAP changes the gaseous atmosphere by incorporating different compositions of gases.
A silo is a structure for storing bulk materials. Silos are used in agriculture to store fermented feed known as silage, not to be confused with a grain bin, which is used to store grains. Silos are commonly used for bulk storage of grain, coal, cement, carbon black, woodchips, food products and sawdust. Three types of silos are in widespread use today: tower silos, bunker silos, and bag silos.
Hermetic storage is a method of using sealed, airtight units to control moisture and insects in stored dry agricultural commodities. The hermetic storage restricts gas exchanges between the internal and external environments and the stored commodity, maintaining the initial levels of moisture and controlling pests by the lack of oxygen.
The khapra beetle, also called cabinet beetle, which originated in South Asia, is one of the world's most destructive pests of grain products and seeds. It is considered one of the 100 worst invasive species in the world. Infestations are difficult to control because of the insect's ability to survive without food for long periods, its preference for dry conditions and low-moisture food, and its resistance to many insecticides. There is a federal quarantine restricting the importation of rice into the U.S. from countries with known infestations of the beetle. Khapra beetle infestation can spoil otherwise valuable trade goods and threaten significant economic losses if introduced to a new area. Handling or consuming contaminated grain and seed products can lead to health issues such as skin irritation and gastrointestinal distress.
Home-stored product entomology is the study of insects which infest foodstuffs stored in the home. It deals with the prevention, detection and eradication of the pests. The five major categories of insects considered in this article are flour beetles, the drugstore beetle, the sawtoothed grain beetle, the Indianmeal moth and fruit flies.
The Angoumois grain moth is a species of the Gelechiidae moth family, commonly referred to as the "rice grain moth". It is most abundant in the temperate or tropical climates of India, China, South Africa, Indonesia, Malaysia, Japan, Egypt and Nigeria, with its location of origin being currently unknown. It is most commonly associated as a pest of field and stored cereal grains as they burrow within the kernel grains of crop plants, rendering them unusable for human consumption. By laying eggs between the grains themselves and hatching at a later time, often during the processing, transportation or storage stages, the moth can be transported to households or countries presently free of Angoumois grain moth infestations. Thus, constant protection against the Angoumois grain moth is required for grain up till the time of consumption.
Grains may be lost in the pre-harvest, harvest, and post-harvest stages. Pre-harvest losses occur before the process of harvesting begins, and may be due to insects, weeds, and rusts. Harvest losses occur between the beginning and completion of harvesting, and are primarily caused by losses due to shattering. Post-harvest losses occur between harvest and the moment of human consumption. They include on-farm losses, such as when grain is threshed, winnowed, and dried. Other on-farm losses include inadequate harvesting time, climatic conditions, practices applied at harvest and handling, and challenges in marketing produce. Significant losses are caused by inadequate storage conditions as well as decisions made at earlier stages of the supply chain, including transportation, storage, and processing, which predispose products to a shorter shelf life.
The maize weevil, known in the United States as the greater rice weevil, is a species of beetle in the family Curculionidae. It can be found in numerous tropical areas around the world, and in the United States, and is a major pest of maize. This species attacks both standing crops and stored cereal products, including wheat, rice, sorghum, oats, barley, rye, buckwheat, peas, and cottonseed. The maize weevil also infests other types of stored, processed cereal products such as pasta, cassava, and various coarse, milled grains. It has even been known to attack fruit while in storage, such as apples.
Malting is the process of steeping, germinating and drying grain to convert it into malt. Germination and sprouting involve a number of enzymes to produce the changes from seed to seedling and the malt producer stops this stage of the process when the required enzymes are optimal. Among other things, the enzymes convert starch to sugars such as maltose, maltotriose and maltodextrines, hence the name malt.
Prostephanus truncatus is commonly referred to as larger grain bore (LGB) with reference to the related Rhyzopertha dominica, another insect, which is relatively smaller in length, hence is referred to as the lesser grain bore. P. truncatus is about 6 mm (0.24 in) long as compared to 3 mm (0.12 in) long in Rh. dominica. At optimum conditions of 80% relative humidity and 32 °C (90 °F), and available food, P. truncatus completes its lifecycle within 27 days. It is a serious pest of dried grains, especially maize and dried cassava in West Africa. This beetle is believed to have been introduced into West Africa through food aid from America. It reached Africa through Tanzania in the early 1970s.
Grain damage is any degradation in the quality of grain. In the current grain trade, this damage can affect price, feed quality, food product quality, and susceptibility to pest contamination. Between the field and the end use, grain may go through any number of handling operations which can each contribute to grain damage. For example, grain might encounter free fall, conveyors, spouts, grain throwers, elevators, hoppers, dryers, and many more. Overall, these handling methods can be evaluated as to what effect they have on the grain. Damaged grain can often be characterized by the extent to which it reduces storage time. For example, cracked or broken kernels are more susceptible to insect or bacteria as well as chemical degradation. The damage to the actual grain is only one example of losses incurred after harvest. In order to quantify grain damage, one must also understand grain quality. Grain quality is a very broad term and can relate to many topics such as foreign material, chemical compositions, mechanical damage, insect infestations, and many more. These references to quality are highly dependent on the end use of the grain. Certain types of damage may be acceptable to specific industries, whereas others cannot use grain with these issues.
Purdue Improved Crop Storage (PICS) bags are a hermetic storage technology which aims to reduce post-harvest cowpea losses due to bruchid infestations in West and Central Africa.
Integrated pest management in museums, libraries, archives and private collections is the practice of monitoring and managing pest and environmental information with pest control methods to prevent pest damage to collections and cultural property. Preserving cultural property is the ultimate goal for these institutions. The pests come in many different forms: insects, mites, rodents, bats, birds, and fungi and the two most common types are insects and fungi. It is widely recommended that every museum have some form of pest control in place and monitoring system to protect their collection and that museums review their storage and museum facilities to determine how to best control and prevent pest infestations while utilizing an Integrated Pest Management plan.
Kairi Maize Silos are heritage-listed silos at 22 Godfrey Road, Kairi, Tablelands Region, Queensland, Australia. They were designed and built in 1924 by Henry Simon Ltd. They were added to the Queensland Heritage Register on 8 August 2007.
A storage pest is an insect or other animal that damages or destroys stored food or other stored valuable organic matter. Insects are a large proportion of storage pests with each type of crop having specific insects that gravitate towards them such as the genus Tribolium that consists of insects such as Tribolium castaneum or Tribolium confusum which damage flour crops primarily.
A flour sack or flour bag is a bag or sack for flour. Large bulk bags as well as smaller consumer sizes are available.