Granite dome

Last updated
Mount Bulka, a granite monolith in Bayanaul National Park, Kazakhstan. Mount Bulka.jpg
Mount Bulka, a granite monolith in Bayanaul National Park, Kazakhstan.

Granite domes are domical hills composed of granite with bare rock exposed over most of the surface. Generally, domical features such as these are known as bornhardts. Bornhardts can form in any type of plutonic rock but are typically composed of granite and granitic gneiss. [1] As granitic plutons cool kilometers below the Earth's surface, minerals in the rock crystallize under uniform confining pressure. Erosion brings the rock closer to Earth's surface and the pressure from above the rock decreases; as a result the rock fractures. These fractures are known as exfoliation joints, or sheet fractures, and form in onionlike patterns that are parallel to the land surface. These sheets of rock peel off the exposed surface and in certain conditions develop domical structures. [2] Additional theories on the origin of granite domes involve scarp-retreat and tectonic uplift.

Contents

Sheet fractures

Sheet fractures are arcuate fractures defining slabs of rock that range from 0.5 to 10 meters thick. They normally form in sets parallel to the Earth's surface but may form in convex-upward or concave-upward sets. There are several possible explanations for the formation of sheet fractures. The most popular hypothesis is that they are the result of expansion and tangential fracturing consequent on erosional offloading or pressure release. There is evidence that supports this hypothesis when looking at granitic landforms that have sheet fractures. Granite forms deep in the Earth's crust under conditions of high ambient or lithostatic pressure. In order for the granite to be exposed at the Earth's surface a considerable thickness of rock must be eroded. This unloading allows the granite to expand radially and sheet fractures form tangentially to the radial stress. This indicates that the shape of the pre-existing land surface determines the geometry of the sheet fractures. [3]

Other theories of origin

One hypothesis is that granite domes are uplifted blocks. This is the case with some granite domes but the fracture related exfoliation joints are what controls the steep slopes. Another theory that regards isolated bornhardts is that they remain after long-distance scarp recession. Moisture related weathering is what causes scarp recession. In the case of granite in a dissected landscape the dry granite high on a slope remains stable and acts as caprock. Granite below this is more easily weathered and eroded because it has been exposed to moisture and has weathered. This ultimately leads to the steepening of the slope and the collapse of higher slope elements as well as the maintenance of scarps of essentially constant inclination and morphology during backwearing. [4]

See also

Related Research Articles

Tor (rock formation) Large, free-standing rock outcrop that rises abruptly from the surrounding smooth and gentle slopes of a rounded hill summit or ridge crest

A tor, which is also known by geomorphologists as either a castle koppie or kopje, is a large, free-standing rock outcrop that rises abruptly from the surrounding smooth and gentle slopes of a rounded hill summit or ridge crest. In the South West of England, the term is commonly also used for the hills themselves – particularly the high points of Dartmoor in Devon and Bodmin Moor in Cornwall.

Weathering Breaking down of rocks, soils and minerals as well as artificial materials through contact with the Earths atmosphere, water, and biota

Weathering is the breaking down of rocks, soils, and minerals as well as wood and artificial materials through contact with the Earth's atmosphere, water, and biological organisms. Weathering occurs in situ, that is, in the same place, with little or no movement, and thus should not be confused with erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity and then being transported and deposited in other locations.

Escarpment Steep slope or cliff separating two relatively level regions

An escarpment is a steep slope or long cliff that forms as a result of faulting or erosion and separates two relatively level areas having different elevations. Usually scarp and scarp face are used interchangeably with escarpment.

Inselberg Isolated rock hill or small mountain that rises abruptly from a relatively flat surrounding plain

An inselberg or monadnock is an isolated rock hill, knob, ridge, or small mountain that rises abruptly from a gently sloping or virtually level surrounding plain. In Southern Africa a similar formation of granite is known as a koppie, an Afrikaans word from the Dutch diminutive word kopje. If the inselberg is dome-shaped and formed from granite or gneiss, it can also be called a bornhardt, though not all bornhardts are inselbergs.

Spheroidal weathering

Spheroidal weathering is a form of chemical weathering that affects jointed bedrock and results in the formation of concentric or spherical layers of highly decayed rock within weathered bedrock that is known as saprolite. When saprolite is exposed by physical erosion, these concentric layers peel (spall) off as concentric shells much like the layers of a peeled onion. Within saprolite, spheroidal weathering often creates rounded boulders, known as corestones or woolsack, of relatively unweathered rock. Spheroidal weathering is also called onion skin weathering,concentric weathering,spherical weathering, or woolsack weathering.

Geology of the Yosemite area

The exposed geology of the Yosemite area includes primarily granitic rocks with some older metamorphic rock. The first rocks were laid down in Precambrian times, when the area around Yosemite National Park was on the edge of a very young North American continent. The sediment that formed the area first settled in the waters of a shallow sea, and compressive forces from a subduction zone in the mid-Paleozoic fused the seabed rocks and sediments, appending them to the continent. Heat generated from the subduction created island arcs of volcanoes that were also thrust into the area of the park. In time, the igneous and sedimentary rocks of the area were later heavily metamorphosed.

Glacial landform Landform created by the action of glaciers

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

Wave Rock rock formation in Western Australia

Wave Rock is a natural rock formation that is shaped like a tall breaking ocean wave. The "wave" is about 15 m (49 ft) high and around 110 m (360 ft) long. It forms the north side of a solitary hill, which is known as "Hyden Rock". This hill, which is a granite inselberg, lies about 3 km (2 mi) east of the small town of Hyden and 296 km (184 mi) east-southeast of Perth, Western Australia. Wave Rock and Hyden Rock are part of a 160 ha (395-acre) nature reserve, Hyden Wildlife Park. More than 100,000 tourists visit every year.

Exfoliation joint

Exfoliation joints or sheet joints are surface-parallel fracture systems in rock, and often leading to erosion of concentric slabs. (See Joint ).

Joint (geology)

A joint is a break (fracture) of natural origin in the continuity of either a layer or body of rock that lacks any visible or measurable movement parallel to the surface (plane) of the fracture. Although they can occur singly, they most frequently occur as joint sets and systems. A joint set is a family of parallel, evenly spaced joints that can be identified through mapping and analysis of the orientations, spacing, and physical properties. A joint system consists of two or more intersecting joint sets.

Hogback (geology) A long, narrow ridge or a series of hills with a narrow crest and steep slopes of nearly equal inclination on both flanks

In geology and geomorphology, a hogback or hog's back is a long, narrow ridge or a series of hills with a narrow crest and steep slopes of nearly equal inclination on both flanks. Typically, the term is restricted to a ridge created by the differential erosion of outcropping, steeply dipping, homoclinal, and typically sedimentary strata. One side of a hogback consists of the surface of a steeply dipping rock stratum called a dip slope. The other side is an erosion face that cuts through the dipping strata that comprises the hogback. The name "hogback" comes from the Hog's Back of the North Downs in Surrey, England, which refers to the landform's resemblance in outline to the back of a hog. The term is also sometimes applied to drumlins and, in Maine, to both eskers and ridges known as "horsebacks".

Panhole A shallow depression or basin eroded into flat or gently sloping cohesive rock

A panhole is a shallow depression or basin eroded into flat or gently sloping cohesive rock. Confusingly, some authors refer to panholes also as potholes, which is a term typically used for similarly shaped riverine landforms. Similar terms for this feature are gnamma (Australia), armchair hollows, weathering pans and solution pans.

Bornhardt A large dome-shaped, steep-sided, bald rock

A bornhardt is a dome-shaped, steep-sided, bald rock outcropping at least 30 metres (100 ft) in height and several hundred metres in width. They are named after Wilhelm Bornhardt (1864–1946), a German geologist and explorer of German East Africa, who first described the feature.

Flatiron (geomorphology) A steeply sloping triangular landform created by the differential erosion of a steeply dipping, erosion-resistant layer of rock overlying softer strata.

Traditionally in geomorphology, a flatiron is a steeply sloping triangular landform created by the differential erosion of a steeply dipping, erosion-resistant layer of rock overlying softer strata. Flatirons have wide bases that form the base of a steep, triangular facet that narrows upward into a point at its summit. The dissection of a hogback by regularly spaced streams often resulted in the formation of a series of flatirons along the strike of the rock layer that formed the hogback. As noted in some, but not all definitions, a number of flatirons are perched upon the slope of a larger mountain with the rock layer forming the flatiron inclined in the same direction as, but often at a steeper angle than the associated mountain slope. The name flatiron refers their resemblance to an upended, household flatiron.

Scarp retreat

Scarp retreat is a geological process through which the location of an escarpment changes over time. Typically the cliff is undermined, rocks fall and form a talus slope, the talus is chemically or mechanically weathered and then removed through water or wind erosion, and the process of undermining resumes. Scarps may retreat for tens of kilometers in this way over relatively short geological time spans, even in arid locations.

Gornaya Shoria megaliths

The Gornaya Shoria megaliths, meaning Mount Shoria megaliths, are rock formations forming part of Mount Shoriya in southern Siberia, Russia, lying to the east of the Altay Mountains.

Nubbin (landform) A small and gentle hill consisting of a bedrock core dotted with rounded residual blocks.

In geomorphology a nubbin is a small and gentle hill consisting of a bedrock core dotted with rounded residual blocks. The blocks derive from disintegrated and weathered bedrock layers. In particular it is assumed that the boulders of the nubbins are the remnants of the outer one or two exfoliation shells that weathered underground, albeit some weathering can continue to occur once the boulders are exposed on surface.

Exfoliating granite Granite skin peeling like an onion (desquamation) because of weathering

Exfoliating granite is a granite undergoing exfoliation, or onion skin weathering (desquamation). The external delaminated layers of granite are gradually produced by the cyclic variations of temperature at the surface of the rock in a process also called spalling. Frost and ice expansion in the joints during the winter accelerate the alteration process while the most unstable loosen external layers are removed by gravity assisted by runoff water.

Climatic geomorphology

Climatic geomorphology is the study of the role of climate in shaping landforms and the earth-surface processes. An approach used in climatic geomorphology is to study relict landforms to infer ancient climates. Being often concerned about past climates climatic geomorphology considered sometimes to be an aspect of historical geology. Since landscape features in one region might have evolved under climates different from those of the present, studying climatically disparate regions might help understand present-day landscapes. For example, Julius Büdel studied both cold-climate processes in Svalbard and weathering processes in tropical India to understand the origin of the relief of Central Europe, which he argued was a palimpsest of landforms formed at different times and under different climates.

References

  1. Twidale, C. R. (2012-12-02). Granite Landforms. Elsevier. ISBN   9780444597649.
  2. Bierman, Paul R. (2014). Key Concepts in Geomorphology. New York, NY: W.H. Freeman and Company Publishers. pp. 81–82. ISBN   978-1-4292-3860-1.
  3. Vidal Romanı́, J. R; Twidale, C. R (1999-12-01). "Sheet fractures, other stress forms and some engineering implications". Geomorphology. 31 (1–4): 13–27. Bibcode:1999Geomo..31...13V. doi:10.1016/S0169-555X(99)00070-7.
  4. Twidale, C.R. "Bornhardts and Associated Fracture Patterns" (PDF).