In mathematics, a graph C*-algebra is a universal C*-algebra constructed from a directed graph. Graph C*-algebras are direct generalizations of the Cuntz algebras and Cuntz-Krieger algebras, but the class of graph C*-algebras has been shown to also include several other widely studied classes of C*-algebras. As a result, graph C*-algebras provide a common framework for investigating many well-known classes of C*-algebras that were previously studied independently. Among other benefits, this provides a context in which one can formulate theorems that apply simultaneously to all of these subclasses and contain specific results for each subclass as special cases.
Although graph C*-algebras include numerous examples, they provide a class of C*-algebras that are surprisingly amenable to study and much more manageable than general C*-algebras. The graph not only determines the associated C*-algebra by specifying relations for generators, it also provides a useful tool for describing and visualizing properties of the C*-algebra. This visual quality has led to graph C*-algebras being referred to as "operator algebras we can see." [1] [2] Another advantage of graph C*-algebras is that much of their structure and many of their invariants can be readily computed. Using data coming from the graph, one can determine whether the associated C*-algebra has particular properties, describe the lattice of ideals, and compute K-theoretic invariants.
The terminology for graphs used by C*-algebraists differs slightly from that used by graph theorists. The term graph is typically taken to mean a directed graph consisting of a countable set of vertices , a countable set of edges , and maps identifying the range and source of each edge, respectively. A vertex is called a sink when ; i.e., there are no edges in with source . A vertex is called an infinite emitter when is infinite; i.e., there are infinitely many edges in with source . A vertex is called a singular vertex if it is either a sink or an infinite emitter, and a vertex is called a regular vertex if it is not a singular vertex. Note that a vertex is regular if and only if the number of edges in with source is finite and nonzero. A graph is called row-finite if it has no infinite emitters; i.e., if every vertex is either a regular vertex or a sink.
A path is a finite sequence of edges with for all . An infinite path is a countably infinite sequence of edges with for all . A cycle is a path with , and an exit for a cycle is an edge such that and for some . A cycle is called a simple cycle if for all .
The following are two important graph conditions that arise in the study of graph C*-algebras.
Condition (L): Every cycle in the graph has an exit.
Condition (K): There is no vertex in the graph that is on exactly one simple cycle. That is, a graph satisfies Condition (K) if and only if each vertex in the graph is either on no cycles or on two or more simple cycles.
A Cuntz-Krieger -family is a collection in a C*-algebra such that the elements of are partial isometries with mutually orthogonal ranges, the elements of are mutually orthogonal projections, and the following three relations (called the Cuntz-Krieger relations) are satisfied:
The graph C*-algebra corresponding to , denoted by , is defined to be the C*-algebra generated by a Cuntz-Krieger -family that is universal in the sense that whenever is a Cuntz-Krieger -family in a C*-algebra there exists a -homomorphism with for all and for all . Existence of for any graph was established by Kumjian, Pask, and Raeburn. [3] Uniqueness of (up to -isomorphism) follows directly from the universal property.
It is important to be aware that there are competing conventions regarding the "direction of the edges" in the Cuntz-Krieger relations. Throughout this article, and in the way that the relations are stated above, we use the convention first established in the seminal papers on graph C*-algebras. [3] [4] The alternate convention, which is used in Raeburn's CBMS book on Graph Algebras, [5] interchanges the roles of the range map and the source map in the Cuntz-Krieger relations. The effect of this change is that the C*-algebra of a graph for one convention is equal to the C*-algebra of the graph with the edges reversed when using the other convention.
In the Cuntz-Krieger relations, (CK2) is imposed only on regular vertices. Moreover, if is a regular vertex, then (CK2) implies that (CK3) holds at . Furthermore, if is a sink, then (CK3) vacuously holds at . Thus, if is a row-finite graph, the relation (CK3) is superfluous and a collection of partial isometries with mutually orthogonal ranges and mutually orthogonal projections is a Cuntz-Krieger -family if and only if the relation in (CK1) holds at all edges in and the relation in (CK2) holds at all vertices in that are not sinks. The fact that the Cuntz-Krieger relations take a simpler form for row-finite graphs has technical consequences for many results in the subject. Not only are results easier to prove in the row-finite case, but also the statements of theorems are simplified when describing C*-algebras of row-finite graphs. Historically, much of the early work on graph C*-algebras was done exclusively in the row-finite case. Even in modern work, where infinite emitters are allowed and C*-algebras of general graphs are considered, it is common to state the row-finite case of a theorem separately or as a corollary, since results are often more intuitive and transparent in this situation.
The graph C*-algebra has been computed for many graphs. Conversely, for certain classes of C*-algebras it has been shown how to construct a graph whose C*-algebra is -isomorphic or Morita equivalent to a given C*-algebra of that class.
The following table shows a number of directed graphs and their C*-algebras. We use the convention that a double arrow drawn from one vertex to another and labeled indicates that there are a countably infinite number of edges from the first vertex to the second.
Directed Graph | Graph C*-algebra |
---|---|
, the complex numbers | |
, the complex-valued continuous functions on the circle | |
, the matrices with entries in | |
, the compact operators on a separable infinite-dimensional Hilbert space | |
, the matrices with entries in | |
, the Cuntz algebra generated by isometries | |
, the Cuntz algebra generated by a countably infinite number of isometries | |
, the unitization of the algebra of compact operators | |
, the Toeplitz algebra |
The class of graph C*-algebras has been shown to contain various classes of C*-algebras. The C*-algebras in each of the following classes may be realized as graph C*-algebras up to -isomorphism:
The C*-algebras in each of the following classes may be realized as graph C*-algebras up to Morita equivalence:
One remarkable aspect of graph C*-algebras is that the graph not only describes the relations for the generators of , but also various graph-theoretic properties of can be shown to be equivalent to C*-algebraic properties of . Indeed, much of the study of graph C*-algebras is concerned with developing a lexicon for the correspondence between these properties, and establishing theorems of the form "The graph has a certain graph-theoretic property if and only if the C*-algebra has a corresponding C*-algebraic property." The following table provides a short list of some of the more well-known equivalences.
Property of | Property of |
---|---|
is a finite graph. | is finite-dimensional. |
The vertex set is finite. | is unital (i.e., contains a multiplicative identity). |
has no cycles. | is an AF algebra. |
satisfies the following three properties:
| is simple. |
satisfies the following three properties:
| Every hereditary subalgebra of contains an infinite projection. (When is simple this is equivalent to being purely infinite.) |
The universal property produces a natural action of the circle group on as follows: If is a universal Cuntz-Krieger -family, then for any unimodular complex number , the collection is a Cuntz-Krieger -family, and the universal property of implies there exists a -homomorphism with for all and for all . For each the -homomorphism is an inverse for , and thus is an automorphism. This yields a strongly continuous action by defining . The gauge action is sometimes called the canonical gauge action on . It is important to note that the canonical gauge action depends on the choice of the generating Cuntz-Krieger -family . The canonical gauge action is a fundamental tool in the study of . It appears in statements of theorems, and it is also used behind the scenes as a technical device in proofs.
There are two well-known uniqueness theorems for graph C*-algebras: the gauge-invariant uniqueness theorem and the Cuntz-Krieger uniqueness theorem. The uniqueness theorems are fundamental results in the study of graph C*-algebras, and they serve as cornerstones of the theory. Each provides sufficient conditions for a -homomorphism from into a C*-algebra to be injective. Consequently, the uniqueness theorems can be used to determine when a C*-algebra generated by a Cuntz-Krieger -family is isomorphic to ; in particular, if is a C*-algebra generated by a Cuntz-Krieger -family, the universal property of produces a surjective -homomorphism, and the uniqueness theorems each give conditions under which is injective, and hence an isomorphism. Formal statements of the uniqueness theorems are as follows:
The Gauge-Invariant Uniqueness Theorem: Let be a graph, and let be the associated graph C*-algebra. If is a C*-algebra and is a -homomorphism satisfying the following two conditions:
then is injective.
The Cuntz-Krieger Uniqueness Theorem: Let be a graph satisfying Condition (L), and let be the associated graph C*-algebra. If is a C*-algebra and is a -homomorphism with for all , then is injective.
The gauge-invariant uniqueness theorem implies that if is a Cuntz-Krieger -family with nonzero projections and there exists a gauge action with and for all , , and , then generates a C*-algebra isomorphic to . The Cuntz-Krieger uniqueness theorem shows that when the graph satisfies Condition (L) the existence of the gauge action is unnecessary; if a graph satisfies Condition (L), then any Cuntz-Krieger -family with nonzero projections generates a C*-algebra isomorphic to .
The ideal structure of can be determined from . A subset of vertices is called hereditary if for all , implies . A hereditary subset is called saturated if whenever is a regular vertex with , then . The saturated hereditary subsets of are partially ordered by inclusion, and they form a lattice with meet and join defined to be the smallest saturated hereditary subset containing .
If is a saturated hereditary subset, is defined to be closed two-sided ideal in generated by . A closed two-sided ideal of is called gauge invariant if for all and . The gauge-invariant ideals are partially ordered by inclusion and form a lattice with meet and joint defined to be the ideal generated by . For any saturated hereditary subset , the ideal is gauge invariant.
The following theorem shows that gauge-invariant ideals correspond to saturated hereditary subsets.
Theorem: Let be a row-finite graph. Then the following hold:
The Drinen-Tomforde Desingularization, often simply called desingularization, is a technique used to extend results for C*-algebras of row-finite graphs to C*-algebras of countable graphs. If is a graph, a desingularization of is a row-finite graph such that is Morita equivalent to . [7] Drinen and Tomforde described a method for constructing a desingularization from any countable graph: If is a countable graph, then for each vertex that emits an infinite number of edges, one first chooses a listing of the outgoing edges as , one next attaches a tail of the form
to at , and finally one erases the edges from the graph and redistributes each along the tail by drawing a new edge from to for each .
Here are some examples of this construction. For the first example, note that if is the graph
then a desingularization is given by the graph
For the second example, suppose is the graph with one vertex and a countably infinite number of edges (each beginning and ending at this vertex). Then a desingularization is given by the graph
Desingularization has become a standard tool in the theory of graph C*-algebras, [8] and it can simplify proofs of results by allowing one to first prove the result in the (typically much easier) row-finite case, and then extend the result to countable graphs via desingularization, often with little additional effort.
The technique of desingularization may not work for graphs containing a vertex that emits an uncountable number of edges. However, in the study of C*-algebras it is common to restrict attention to separable C*-algebras. Since a graph C*-algebra is separable precisely when the graph is countable, much of the theory of graph C*-algebras has focused on countable graphs.
The K-groups of a graph C*-algebra may be computed entirely in terms of information coming from the graph. If is a row-finite graph, the vertex matrix of is the matrix with entry defined to be the number of edges in from to . Since is row-finite, has entries in and each row of has only finitely many nonzero entries. (In fact, this is where the term "row-finite" comes from.) Consequently, each column of the transpose contains only finitely many nonzero entries, and we obtain a map given by left multiplication. Likewise, if denotes the identity matrix, then provides a map given by left multiplication.
Theorem: Let be a row-finite graph with no sinks, and let denote the vertex matrix of . Then
gives a well-defined map by left multiplication. Furthermore,
In addition, if is unital (or, equivalently, is finite), then the isomorphism takes the class of the unit in to the class of the vector in .
Since is isomorphic to a subgroup of the free group , we may conclude that is a free group. It can be shown that in the general case (i.e., when is allowed to contain sinks or infinite emitters) that remains a free group. This allows one to produce examples of C*-algebras that are not graph C*-algebras: Any C*-algebra with a non-free K1-group is not Morita equivalent (and hence not isomorphic) to a graph C*-algebra.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.
In mathematics, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.
In mathematics, the Cuntz algebra, named after Joachim Cuntz, is the universal C*-algebra generated by isometries of an infinite-dimensional Hilbert space satisfying certain relations. These algebras were introduced as the first concrete examples of a separable infinite simple C*-algebra, meaning as a Hilbert space, is isometric to the sequence space
In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.
In mathematics, specifically in operator K-theory, the Baum–Connes conjecture suggests a link between the K-theory of the reduced C*-algebra of a group and the K-homology of the classifying space of proper actions of that group. The conjecture sets up a correspondence between different areas of mathematics, with the K-homology of the classifying space being related to geometry, differential operator theory, and homotopy theory, while the K-theory of the group's reduced C*-algebra is a purely analytical object.
In mathematics, a finitely generated algebra is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.
In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure.
In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann.
In the mathematical subject of group theory, the Stallings theorem about ends of groups states that a finitely generated group G has more than one end if and only if the group G admits a nontrivial decomposition as an amalgamated free product or an HNN extension over a finite subgroup. In the modern language of Bass–Serre theory the theorem says that a finitely generated group G has more than one end if and only if G admits a nontrivial action on a simplicial tree with finite edge-stabilizers and without edge-inversions.
In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich.
For C*-algebra in mathematics, a k-graph is a countable category with domain and codomain maps and , together with a functor which satisfies the following factorisation property: if then there are unique with such that .
In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, by restricting our attention to the simply connected Lie groups, the Lie group-Lie algebra correspondence will be one-to-one.
Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.
In mathematics, a Leavitt path algebra is a universal algebra constructed from a directed graph. The Leavitt path algebras generalize the Leavitt algebras and may also be considered as algebraic analogues of the graph C*-algebras. Leavitt path algebras were simultaneously introduced in 2005 by Gene Abrams and Gonzalo Aranda Pino as well as by Pere Ara, María Moreno, and Enrique Pardo, with neither of the two groups aware of the other's work. Leavitt path algebras have been investigated by dozens of mathematicians since their introduction, and in 2020 Leavitt path algebras were added to the Mathematics Subject Classification with code 16S88 under the general discipline of Associative Rings and Algebras.