For fixed-wing aircraft, ground effect is the reduced aerodynamic drag that an aircraft's wings generate when they are close to a fixed surface. [1] During takeoff, ground effect can cause the aircraft to "float" while below the recommended climb speed. The pilot can then fly just above the runway while the aircraft accelerates in ground effect until a safe climb speed is reached. [2]
For rotorcraft, ground effect results in less drag on the rotor during hovering close to the ground. At high weights this sometimes allows the rotorcraft to lift off while stationary in ground effect but does not allow it to transition to flight out of ground effect. Helicopter pilots are provided with performance charts which show the limitations for hovering their helicopter in ground effect (IGE) and out of ground effect (OGE). The charts show the added lift benefit produced by ground effect. [3]
For fan- and jet-powered vertical take-off and landing (VTOL) aircraft, ground effect when hovering can cause suckdown and fountain lift on the airframe and loss in hovering thrust if the engine sucks in its own exhaust gas, which is known as hot gas ingestion (HGI). [4] [5]
When an aircraft flies at or below approximately half the length of the aircraft's wingspan above the ground or water there occurs an often-noticeable ground effect. The result is lower induced drag on the aircraft. This is caused primarily by the ground or water obstructing the creation of wingtip vortices and interrupting downwash behind the wing. [6] [7]
A wing generates lift by deflecting the oncoming airmass (relative wind) downward. [8] The deflected or "turned" flow of air creates a resultant force on the wing in the opposite direction (Newton's 3rd law). The resultant force is identified as lift. Flying close to a surface increases air pressure on the lower wing surface, nicknamed the "ram" or "cushion" effect, and thereby improves the aircraft lift-to-drag ratio. The lower/nearer the wing is to the ground, the more pronounced the ground effect becomes. While in the ground effect, the wing requires a lower angle of attack to produce the same amount of lift. In wind tunnel tests, in which the angle of attack and airspeed remain constant, an increase in the lift coefficient ensues, [9] which accounts for the "floating" effect. Ground effect also alters thrust versus velocity, where reduced induced drag requires less thrust in order to maintain the same velocity. [9]
Low winged aircraft are more affected by ground effect than high wing aircraft. [10] Due to the change in up-wash, down-wash, and wingtip vortices, there may be errors in the airspeed system while in ground effect due to changes in the local pressure at the static source. [9]
When a hovering rotor is near the ground the downward flow of air through the rotor is reduced to zero at the ground. This condition is transferred up to the disc through pressure changes in the wake which decreases the inflow to the rotor for a given disc loading, which is rotor thrust for each square foot of its area. This gives a thrust increase for a particular blade pitch angle, or, alternatively, the power required for a thrust is reduced. For an overloaded helicopter that can only hover IGE it may be possible to climb away from the ground by translating to forward flight first while in ground effect. [11] The ground-effect benefit disappears rapidly with speed but the induced power decreases rapidly as well to allow a safe climb. [12] Some early underpowered helicopters could only hover close to the ground. [13] Ground effect is at its maximum over a firm, smooth surface. [14]
There are two effects inherent to VTOL aircraft operating at zero and low speeds in ground effect, suckdown and fountain lift. A third, hot gas ingestion, may also apply to fixed-wing aircraft on the ground in windy conditions or during thrust reverser operation. How well, in terms of weight lifted, a VTOL aircraft hovers IGE depends on suckdown on the air frame, fountain impingement on the underside of the fuselage and HGI into the engine causing inlet temperature rise (ITR). Suckdown works against the engine lift as a downward force on the airframe. Fountain flow works with the engine lift jets as an upwards force. The severity of the HGI problem becomes clear when the level of ITR is converted into engine thrust loss, three to four percent per 12.222 °c inlet temperature rise. [15] [16]
Suckdown is the result of entrainment of air around aircraft by lift jets when hovering. It also occurs in free air (OGE) causing loss of lift by reducing pressures on the underside of the fuselage and wings. Enhanced entrainment occurs when close to the ground giving higher lift loss. Fountain lift occurs when an aircraft has two or more lift jets. The jets strike the ground and spread out. Where they meet under the fuselage they mix and can only move upwards striking the underside of the fuselage. [17] How well their upward momentum is diverted sideways or downward determines the lift. Fountain flow follows a curved fuselage underbody and retains some momentum in an upward direction so less than full fountain lift is captured unless lift improvement devices are fitted. [18] HGI reduces engine thrust because the air entering the engine is hotter and less dense than cold air.
Early VTOL experimental aircraft operated from open grids to channel away the engine exhaust and prevent thrust loss from HGI.
The Bell X-14, built to research early VTOL technology, was unable to hover until suckdown effects were reduced by raising the aircraft with longer landing gear legs. [19] It also had to operate from an elevated platform of perforated steel to reduce HGI. [20] The Dassault Mirage IIIV VTOL research aircraft only ever operated vertically from a grid which allowed engine exhaust to be channeled away from the aircraft to avoid suckdown and HGI effects. [21]
Ventral strakes retroactively fitted to the P.1127 improved flow and increased pressure under the belly in low altitude hovering. Gun pods fitted in the same position on the production Harrier GR.1/GR.3 and the AV-8A Harrier did the same thing. Further lift improvement devices (LIDS) were developed for the AV-8B and Harrier II. To box in the belly region where the lift-enhancing fountains strike the aircraft, strakes were added to the underside of the gun pods and a hinged dam could be lowered to block the gap between the front ends of the strakes. This gave a 1200 lb lift gain. [22]
Lockheed Martin F-35 Lightning II weapons-bay inboard doors on the F-35B open to capture fountain flow created by the engine and fan lift jets and counter suckdown IGE.
The stalling angle of attack is less in ground effect, by approximately 2–4 degrees, than in free air. [23] [24] When the flow separates there is a large increase in drag. If the aircraft overrotates on take-off at too low a speed the increased drag can prevent the aircraft from leaving the ground. Two de Havilland Comets overran the end of the runway after overrotating. [25] [26] Loss of control may occur if one wing tip stalls in ground effect. During certification testing of the Gulfstream G650 business jet the test aircraft rotated to an angle beyond the predicted IGE stalling angle. The over-rotation caused one wing-tip to stall and an uncommanded roll, which overpowered the lateral controls, leading to loss of the aircraft. [27] [28]
A few vehicles have been designed to explore the performance advantages of flying in ground effect, mainly over water. The operational disadvantages of flying very close to the surface have discouraged widespread applications. [29]
An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or the dynamic lift of an airfoil, or, in a few cases, direct downward thrust from its engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.
A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.
A tiltrotor is an aircraft that generates lift and propulsion by way of one or more powered rotors mounted on rotating shafts or nacelles usually at the ends of a fixed wing. Almost all tiltrotors use a transverse rotor design, with a few exceptions that use other multirotor layouts.
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number.
Takeoff is the phase of flight in which an aerospace vehicle leaves the ground and becomes airborne. For aircraft traveling vertically, this is known as liftoff.
A vertical and/or short take-off and landing (V/STOL) aircraft is an airplane able to take-off or land vertically or on short runways. Vertical takeoff and landing (VTOL) aircraft are a subset of V/STOL craft that do not require runways at all. Generally, a V/STOL aircraft needs to be able to hover. Helicopters are not considered under the V/STOL classification as the classification is only used for aeroplanes, aircraft that achieve lift (force) in forward flight by planing the air, thereby achieving speed and fuel efficiency that is typically greater than the capability of helicopters.
In aeronautics, a ducted fan is a thrust-generating mechanical fan or propeller mounted within a cylindrical duct or shroud. Other terms include ducted propeller or shrouded propeller. When used in vertical takeoff and landing (VTOL) applications it is also known as a shrouded rotor.
A tiltwing aircraft features a wing that is horizontal for conventional forward flight and rotates up for vertical takeoff and landing. It is similar to the tiltrotor design where only the propeller and engine rotate. Tiltwing aircraft are typically fully capable of VTOL operations.
The Avro Canada VZ-9 Avrocar is a VTOL aircraft developed by Avro Canada as part of a secret U.S. military project carried out in the early years of the Cold War. The Avrocar intended to exploit the Coandă effect to provide lift and thrust from a single "turborotor" blowing exhaust out of the rim of the disk-shaped aircraft. In the air, it would have resembled a flying saucer.
On a helicopter, the main rotor or rotor system is the combination of several rotary wings with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.
A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.
A rotary-wing aircraft, rotorwing aircraft or rotorcraft is a heavier-than-air aircraft with rotary wings that spin around a vertical mast to generate lift. The assembly of several rotor blades mounted on a single mast is referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".
A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.
Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Some trees have seeds that have wing-like structures that enable the seed to spin to the ground in autorotation, which helps the seeds to disseminate over a wider area.
The Bölkow Bo 46 was a West German experimental helicopter built to test the Derschmidt rotor system that aimed to allow much higher speeds than traditional helicopter designs. Wind tunnel testing showed promise, but the Bo 46 demonstrated a number of problems and added complexity that led to the concept being abandoned. The Bo 46 was one of a number of new designs exploring high-speed helicopter flight that were built in the early 1960s.
The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.
The period between 1945 and 1979 is sometimes called the post-war era or the period of the post-war political consensus. During this period, aviation was dominated by the arrival of the Jet Age. In civil aviation the jet engine allowed a huge expansion of commercial air travel, while in military aviation it led to the widespread introduction of supersonic aircraft.
A cyclorotor, cycloidal rotor, cycloidal propeller or cyclogiro, is a fluid propulsion device that converts shaft power into the acceleration of a fluid using a rotating axis perpendicular to the direction of fluid motion. It uses several blades with a spanwise axis parallel to the axis of rotation and perpendicular to the direction of fluid motion. These blades are cyclically pitched twice per revolution to produce force in any direction normal to the axis of rotation. Cyclorotors are used for propulsion, lift, and control on air and water vehicles. An aircraft using cyclorotors as the primary source of lift, propulsion, and control is known as a cyclogyro or cyclocopter. A unique aspect is that it can change the magnitude and direction of thrust without the need of tilting any aircraft structures. The patented application, used on ships with particular actuation mechanisms both mechanical or hydraulic, is named after German company Voith Turbo.
An annular lift fan aircraft is a conceptual vertical takeoff and landing (VTOL) aircraft that was first systematically and numerically investigated in 2015. This concept was proposed to offer a VTOL solution for both high hovering efficiency and high cruise speed, using a large annular lift fan instead of the relatively small conventional circular lift fans used in the Ryan XV-5 Vertifan and the F-35B Lightning II (JSF).
{{cite journal}}
: Cite journal requires |journal=
(help){{cite web}}
: Missing or empty |url=
(help){{cite book}}
: |website=
ignored (help)