Rotorcraft

Last updated
A Bell 47 helicopter, an early example of a powered rotorcraft Bell 47 (52253543908).jpg
A Bell 47 helicopter, an early example of a powered rotorcraft

A rotary-wing aircraft, rotorwing aircraft or rotorcraft is a heavier-than-air aircraft with rotary wings that spin around a vertical mast to generate lift. The assembly of several rotor blades mounted on a single mast is referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors". [1]

Contents

Rotorcraft generally include aircraft where one or more rotors provide lift throughout the entire flight, such as helicopters, autogyros, and gyrodynes. Compound rotorcraft augment the rotor with additional thrust engines, propellers, or static lifting surfaces. Some types, such as helicopters, are capable of vertical takeoff and landing. An aircraft which uses rotor lift for vertical flight but changes to solely fixed-wing lift in horizontal flight is not a rotorcraft but a convertiplane.

Classes of rotorcraft

Helicopter

A Bell UH-1 Iroquois helicopter PAF UH-1N-(cropped).jpg
A Bell UH-1 Iroquois helicopter

A helicopter is a powered rotorcraft with rotors driven by the engine(s) throughout the flight, allowing it to take off and land vertically, hover, and fly forward, backward, or laterally. Helicopters have several different configurations of one or more main rotors.

Helicopters with a single shaft-driven main lift rotor require some sort of antitorque device such as a tail rotor, fantail, or NOTAR, except some rare examples of helicopters using tip jet propulsion, which generates almost no torque.

Autogyro

A Magni M-16 Tandem Trainer autogyro Magni Gyro M-16C Tandem Trainer G-CKZZ (31016835998).jpg
A Magni M-16 Tandem Trainer autogyro

An autogyro (sometimes called gyrocopter, gyroplane, or rotaplane) uses an unpowered rotor, driven by aerodynamic forces in a state of autorotation to develop lift, and an engine-powered propeller, similar to that of a fixed-wing aircraft, to provide thrust. While similar to a helicopter rotor in appearance, the autogyro's rotor must have air flowing up and through the rotor disk in order to generate rotation. Early autogyros resembled the fixed-wing aircraft of the day, with wings and a front-mounted engine and propeller in a tractor configuration to pull the aircraft through the air. Late-model autogyros feature a rear-mounted engine and propeller in a pusher configuration.

The autogyro was invented in 1920 by Juan de la Cierva. The autogyro with pusher propeller was first tested by Etienne Dormoy with his Buhl A-1 Autogyro.

Gyrodyne

A Fairey Rotodyne prototype gyrodyne SFF 002-1055526 Fairey Rotodyne.jpg
A Fairey Rotodyne prototype gyrodyne

The rotor of a gyrodyne is normally driven by its engine for takeoff and landing hovering like a helicopter with anti-torque and propulsion for forward flight provided by one or more propellers mounted on short or stub wings. As power is increased to the propeller, less power is required by the rotor to provide forward thrust resulting in reduced pitch angles and rotor blade flapping. At cruise speeds with most or all of the thrust being provided by the propellers, the rotor receives power only sufficient to overcome the profile drag and maintain lift. The effect is a rotorcraft operating in a more efficient manner than the freewheeling rotor of an autogyro in autorotation, minimizing the adverse effects of retreating blade stall of helicopters at higher airspeeds.

Rotor kite

A Bensen B-6 rotor kite Bensen B-6 Gyroglider - NASM Udvar Hazy Center (51220192957).jpg
A Bensen B-6 rotor kite

A rotor kite or gyroglider is an unpowered rotary-wing aircraft. Like an autogyro or helicopter, it relies on lift created by one or more sets of rotors in order to fly. Unlike a helicopter, autogyros and rotor kites do not have an engine powering their rotors, but while an autogyro has an engine providing forward thrust that keeps the rotor turning, a rotor kite has no engine at all, and relies on either being carried aloft and dropped from another aircraft, or by being towed into the air behind a car or boat.

Rotor configuration

Number of blades

A rotary wing is characterised by the number of blades. Typically this is between two and six per driveshaft.

Number of rotors

A rotorcraft may have one or more rotors. Various rotor configurations have been used:

Stopped rotors

Some rotary wing aircraft are designed to stop the rotor for forward flight so that it then acts as a fixed wing. For vertical flight and hovering it spins to act as a rotary wing or rotor, and for forward flight at speed it stops to act as a fixed wing providing some or all of the lift required. Additional fixed wings may also be provided to help with stability and control and to provide auxiliary lift.

An early American proposal was the conversion of the Lockheed F-104 Starfighter with a triangular rotor wing. The idea was later revisited by Hughes. [3] The Sikorsky S-72 research aircraft underwent extensive flight testing.

In 1986 the Sikorsky S-72 Rotor Systems Research Aircraft (RSRA) was fitted with a four-bladed stopped rotor, known as the X-wing. The programme was cancelled two years later, before the rotor had flown.

The later canard rotor/wing (CRW) concept added a "canard" foreplane as well as a conventional tailplane, offloading the rotor wing and providing control during forward flight. For vertical and low-speed flight, the main airfoil is tip-driven as a helicopter's rotor by exhaust from a jet engine, and there is no need for a tail rotor. In high-speed flight the airfoil is stopped in a spanwise position, as the main wing of a three-surface aircraft, and the engine exhausts through an ordinary jet nozzle. Two Boeing X-50 Dragonfly prototypes with a two-bladed rotor were flown from 2003 but the program ended after both had crashed, having failed to transition successfully. [4]

In 2013 the US Naval Research Laboratory (NRL) published a vertical-to-horizontal flight transition method and associated technology, patented December 6, 2011, [5] which they call the Stop-Rotor Rotary Wing Aircraft. [6] The Australian company StopRotor Technology Pty Ltd has developed a prototype Hybrid RotorWing (HRW) craft. [7] [8] The design uses high alpha airflow to provide a symmetrical airflow across all the rotor blades, requiring it to drop almost vertically during transition. [8] Inflight transition from fixed to rotary mode was demonstrated in August 2013. [9] [10] [11]

Another approach proposes a tailsitter configuration in which the lifting surfaces act as a rotors during takeoff, the craft tilts over for horizontal flight and the rotor stops to act as a fixed wing. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Aircraft</span> Vehicle or machine that is able to fly by gaining support from the air

An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or the dynamic lift of an airfoil, or, in a few cases, direct downward thrust from its engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

<span class="mw-page-title-main">Autogyro</span> Rotorcraft with unpowered rotor

An autogyro, or gyroplane, is a class of rotorcraft that uses an unpowered rotor in free autorotation to develop lift. While similar to a helicopter rotor in appearance, the autogyro's unpowered rotor disc must have air flowing upward across it to make it rotate.

<span class="mw-page-title-main">Juan de la Cierva</span> Spanish engineer and count (1895–1936)

Juan de la Cierva y Codorníu, 1st Count of la Cierva, was a Spanish civil engineer, pilot and a self-taught aeronautical engineer. His most famous accomplishment was the invention in 1920 of a rotorcraft called Autogiro, a single-rotor type of aircraft that came to be called autogyro in the English language. In 1923, after four years of experimentation, De la Cierva developed the articulated rotor, which resulted in the world's first successful flight of a stable rotary-wing aircraft, with his C.4 prototype.

The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.

<span class="mw-page-title-main">Fairey Rotodyne</span> 1950s British compound gyroplane

The Fairey Rotodyne was a 1950s British compound gyroplane designed and built by Fairey Aviation and intended for commercial and military uses. A development of the earlier Fairey Jet Gyrodyne, which had established a world helicopter speed record, the Rotodyne featured a tip-jet-powered rotor that burned a mixture of fuel and compressed air bled from two wing-mounted Napier Eland turboprops. The rotor was driven for vertical takeoffs, landings and hovering, as well as low-speed translational flight, but autorotated during cruise flight with all engine power applied to two propellers.

<span class="mw-page-title-main">Boeing X-50 Dragonfly</span> US experimental drone aircraft

The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.

<span class="mw-page-title-main">Helicopter flight controls</span> Instruments used in helicopter flight

Helicopter flight controls are used to achieve and maintain controlled aerodynamic helicopter flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a desired way. To tilt forward and back (pitch) or sideways (roll) requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.

<span class="mw-page-title-main">Helicopter rotor</span> Aircraft component

On a helicopter, the main rotor or rotor system is the combination of several rotary wings with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.

<span class="mw-page-title-main">Quadcopter</span> Helicopter with four rotors

A quadcopter, also called quadrocopter, or quadrotor is a type of helicopter or multicopter that has four rotors.

<span class="mw-page-title-main">Gyrodyne</span> Type of VTOL aircraft

A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide forward thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.

A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.

<span class="mw-page-title-main">P-factor</span> Yawing force caused by a rotating propeller

P‑factor, also known as asymmetric blade effect and asymmetric disc effect, is an aerodynamic phenomenon experienced by a moving propeller, wherein the propeller's center of thrust moves off-center when the aircraft is at a high angle of attack. This shift in the location of the center of thrust will exert a yawing moment on the aircraft, causing it to yaw slightly to one side. A rudder input is required to counteract the yawing tendency.

<span class="mw-page-title-main">Fairey Jet Gyrodyne</span>

The Fairey Jet Gyrodyne is a British experimental compound gyroplane built by the Fairey Aviation Company that incorporated helicopter, gyrodyne and autogyro characteristics. The Jet Gyrodyne was the subject of a Ministry of Supply (MoS) research contract to gather data for the follow-up design, the Rotodyne.

<span class="mw-page-title-main">Helicopter</span> Type of rotorcraft

A helicopter is a type of rotorcraft in which lift and thrust are supplied by horizontally spinning rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of short take-off and landing (STOL) or short take-off and vertical landing (STOVL) aircraft cannot perform without a runway.

<span class="mw-page-title-main">Powered lift</span> VTOL capable fixed-wing aircraft

A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.

<span class="mw-page-title-main">Disk loading</span> Characteristic of rotors/propellers

In fluid dynamics, disk loading or disc loading is the average pressure change across an actuator disk, such as an airscrew. Airscrews with a relatively low disk loading are typically called rotors, including helicopter main rotors and tail rotors; propellers typically have a higher disk loading. The V-22 Osprey tiltrotor aircraft has a high disk loading relative to a helicopter in the hover mode, but a relatively low disk loading in fixed-wing mode compared to a turboprop aircraft.

<span class="mw-page-title-main">Autorotation</span> Rotation of helicopter rotors by action of wind resistance rather than engine power

Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Some trees have seeds that have wing-like structures that enable the seed to spin to the ground in autorotation, which helps the seeds to disseminate over a wider area.

<span class="mw-page-title-main">Fairey FB-1 Gyrodyne</span>

The Fairey FB-1 Gyrodyne is an experimental British rotorcraft that used single lifting rotor and a tractor propeller mounted on the tip of the starboard stub wing to provide both propulsion and anti-torque reaction.

<span class="mw-page-title-main">Slowed rotor</span> Helicopter design variant

The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.

A rotor wing is a lifting rotor or wing which spins to provide aerodynamic lift. In general, a rotor may spin about an axis which is aligned substantially either vertically or side-to-side (spanwise). All three classes have been studied for use as lifting rotors and several variations have been flown on full-size aircraft, although only the vertical-axis rotary wing has become widespread on rotorcraft such as the helicopter.

References

  1. "ICAO Annex 7." Retrieved on 30 September 2009.
  2. Photo: J Thinesen, SFF Archived 2009-08-28 at the Wayback Machine photo archive
  3. "Hughes Rotor Wing Brochure" Archived 2018-02-27 at the Wayback Machine . The Unwanted Blog (retrieved 15 May 2014)
  4. McKenna, James T. "One Step Beyond", Rotor & Wing, February, 2007, page 54
  5. ""USPTO 8,070,090"". Archived from the original on 2021-12-15. Retrieved 2021-12-15.
  6. "Stop-Rotor Rotary Wing Aircraft" Archived 2018-01-15 at the Wayback Machine . Technology Transfer Office, US Naval Research Laboratory. (retrieved 16 May 2014)
  7. "Stoprotor, Hybrid Rotorwing VTOL" Archived 2015-09-24 at the Wayback Machine . sUAS News
  8. 1 2 "Hybrid RotorWing design transitions from fixed to rotary wing mid-flight" Archived 2016-07-16 at the Wayback Machine gizmag.com
  9. Rotor & Wing "Hybrid RotorWing Conducts In-flight Fixed/Rotary Transition" Archived 2016-08-13 at the Wayback Machine . Rotor & Wing, 30 August 2013.
  10. "Top Tech – The Flying Transformer". Archived from the original on 2018-01-14. Retrieved 2018-02-27.
  11. "StopRotor completes successful first transition flight Archived 2014-05-08 at the Wayback Machine ". Australian Aviation, 28 August 2013. Accessed: 7 May 2014.
  12. NASAPAV (2009-12-21), NASA Tanzenflugel VTOL UAV Concept, archived from the original on 2016-12-14, retrieved 2017-01-08
External videos
Nuvola apps kaboodle.svg StopRotor video